Chapter 4 The infection and pathogenic mechanism of bacteria

Occurrence and development of bacterial infection

Origin of infection

- 1. Exogenous infection
 - (1) patient
 - (2) carrier
 - (3) animal
- 2. Endogenous infection normal flora

The mode of infection

Horizontal transmission

person—person—animal (zoonosis)

Vertical transmission

mother offspring

placenta

birth canal

breast milk

The route of infection

- 1. respiratory tract
- 2. digestive tract
- 3. damaged skin or mucous membranes
- 4. blood
- 5. arthropod vector
- 6. contact: sex contact (STD)

The type and outcome of infection

- 1. inapparent infection
- 11. apparent infection
- **III.** whole body infection
- IV. carrier state

apparent infection

acute infection chronic infection

local infection systemic infection

furuncle carbuncle

bacteremia toxemia septicemia pyemia

whole body infection

- toxemia: is the presence of exotoxin in the blood. pyemia: is caused by purulent microorganisms in the blood.
- endotoxemia: is the presence of endotoxin in the blood.
- septicemia: illness that occurs when poisonous substances (toxins) produced by certain bacteria enter the bloodstream.
- bacteremia: is an invasion of the bloodstream by bacteria.

Bacterial Pathogenesis Mechanism

dvirulence:

refers to extent of pathogenicity.

median lethal dose(LD50):

The number of pathogens required to cause lethal disease in half of the exposed hosts is called an LD_{50} .

median infective dose(ID50):

The number of pathogens required to cause disease (or, at least, infection) in half of the exposed hosts is called the ID_{50} .

(I) Invasiveness:

The ability of bacterium to resist host defence, colonize, multiply and spread.

1.adhesion -----surface structure

• bacteria to host cell:

pili
capsule
colonization factor

bacteria to bacteria:
microcolony
biofilm

common pili

2.Penetration and spread capsule invasive enzyme --- excenzyme

- coagulase--- S. aureus
 fibrinogen→fibrin → surround bacteria
- hyaluronidase (spreading factor)
 hydrolyze hyaluronic acid tissue loose, B. spreads
- streptokinase. SK ----Lyse fibrin
- streptodornase, SD---resolve DNA.

microcolony and biofilm

(II). toxin 1.exotoxin:

- **▶**excreted by living cells, G+ bacteria
- **➤**polypeptide
- ➤ Heat-unstable, 60° C, 1-2hr destroy
- ➤ Strong antigenicity, exotoxin→ toxoid
- ➤ highly toxic
- **➤**high selection for tissues

neurotoxin cytotoxin enterotoxin

>structure: A subunit-B subunit

exotoxin

subunit A: toxicity active

subunit B: non-toxicity, bind receptor of sensitive cell

exotoxin

neurotoxin: tetanospasmin spinal cord

cytotoxin: diphtherotoxin inhibit cell protein synthesis

💃 enterotoxin: cholera toxin

Clostridium tetani

This child has diphtheria resulting in a thick gray coating over back of throat. This coating can eventually expand down through airway and, if not treated, the child could die from suffocation

2. endotoxin

- ➤ integral part of G⁻ bacteria cell wall. release after bacteria disintegration
- ►LPS, main toxic part: Lipid A
- ► heat-stable: 160°C 2-4hr
- > can't converted into toxoid
- >weakly toxic
- non-specificity

all endotoxins produce the same symptoms.

- Shwartzman and DIC

内毒素结构示意图

