Case 38

Respiratory Acidosis: Chronic Obstructive Pulmonary Disease

Bernice Betweiler was a 73-year-old retired seamstress who had chronic obstructive pulmonary disease secondary to a long history of smoking (see Case 24). Six months before her death, she was examined by her physician. Her blood values at that time are shown in Table 4-16.

TABLE 4-16 Bernice’s Laboratory Values 6 Months Before Her Terminal Admission

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{O_2}</td>
<td>48 mm Hg (normal, 100 mm Hg)</td>
</tr>
<tr>
<td>P_{CO_2}</td>
<td>69 mm Hg (normal, 40 mm Hg)</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>34 mEq/L (normal, 24 mEq/L)</td>
</tr>
<tr>
<td>pH</td>
<td>7.32 (normal, 7.4)</td>
</tr>
</tbody>
</table>

Against her physician’s warnings, Bernice adamantly refused to stop smoking. Six months later, Bernice was desperately ill and was taken to the emergency department by her sister. Her blood values at that time are shown in Table 4-17.

TABLE 4-17 Bernice’s Laboratory Values at Her Terminal Admission

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{O_2}</td>
<td>35 mm Hg (normal, 100 mm Hg)</td>
</tr>
<tr>
<td>P_{CO_2}</td>
<td>69 mm Hg (normal, 40 mm Hg)</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>20 mEq/L (normal, 24 mEq/L)</td>
</tr>
<tr>
<td>pH</td>
<td>7.09 (normal, 7.4)</td>
</tr>
</tbody>
</table>

She remained in the hospital and died 2 weeks later.

QUESTIONS

1. When Bernice visited her physician 6 months before her death, what acid-base disorder did she have? What was the cause of this disorder?

2. Why was her HCO_3^- concentration increased at that visit?

3. At that visit, was the degree of renal compensation appropriate for her P_{CO_2}?

4. At the terminal admission to the hospital, why was Bernice’s pH so much lower than it had been 6 months earlier? Propose a mechanism to explain how her HCO_3^- concentration had become lower than normal at the terminal admission (when it had previously been higher than normal)?

5. Given your conclusions about Bernice’s condition at the terminal admission, would you expect her anion gap to have been increased, decreased, or normal?
1. At the initial visit to her physician, Bernice had respiratory acidosis. Decreased alveolar ventilation, secondary to her obstructive lung disease, led to an increase in P_{CO_2} because perfused regions of her lungs were not ventilated (ventilation-perfusion defect). In those poorly ventilated regions of the lungs, CO_2 could not be expired. The increase in P_{CO_2} caused a decrease in her arterial pH.

2. The HCO_3^- concentration is always increased to some extent in simple respiratory acidosis. The extent of this increase depends on whether the disorder is acute or chronic. In acute respiratory acidosis, the HCO_3^- concentration is modestly increased secondary to mass action effects that are explained by the following reactions. As CO_2 is retained and P_{CO_2} increases, the reactions are driven to the right, causing an increase in HCO_3^- concentration.

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

In chronic respiratory acidosis, the increase in HCO_3^- concentration is much greater because, in addition to mass action effects, the kidney increases the synthesis and reabsorption of “new” HCO_3^- (renal compensation). This compensation for respiratory acidosis occurs in the intercalated cells of the late distal tubule and collecting ducts, where H^+ is secreted and new (i.e., newly synthesized) HCO_3^- is reabsorbed. When arterial P_{CO_2} is chronically elevated, renal intracellular P_{CO_2} is elevated as well. This increased intracellular P_{CO_2} supplies more H^+ for urinary secretion and more HCO_3^- for reabsorption (see Figure 4-15).

Why is this renal response, which causes an increase in the blood HCO_3^- concentration, called a compensation? Compensation for what? The increase in HCO_3^- concentration is “compensating for,” or correcting, the pH toward normal, as shown in the Henderson-Hasselbalch equation:

$$pH = 6.1 + \log \frac{HCO_3^-}{P_{CO_2}}$$

In respiratory acidosis, CO_2 (the denominator of the ratio) is increased secondary to hypoventilation. This increase in P_{CO_2} causes a decrease in arterial pH. In the chronic phase of respiratory acidosis, the kidneys increase the HCO_3^- concentration (the numerator). This increase tends to normalize the ratio of HCO_3^- to CO_2 and the pH. Although Bernice had retained significant amounts of CO_2 (her P_{CO_2} was 69 mm Hg), her pH was only modestly acidic (7.32) 6 months prior to her death. Bernice “lived” at an elevated P_{CO_2} of 69 mm Hg because her kidneys compensated, or corrected, her pH almost to normal. (Incidentally, healthy persons “live” at a P_{CO_2} of 40 mm Hg.)

3. The question asks whether the degree of renal compensation (for her elevated P_{CO_2}) was appropriate. In other words, did Bernice’s kidneys increase her HCO_3^- concentration to the extent expected? The Appendix shows the rules for calculating the expected compensatory responses for simple acid-base disorders. For simple chronic respiratory acidosis, HCO_3^- is expected to increase by 0.4 mEq/L for every 1 mm Hg increase in P_{CO_2}. To calculate the expected, or predicted, increase in HCO_3^-, we determine how much the P_{CO_2} was increased above the normal value of 40 mm Hg, then multiply this increase by 0.4. The predicted change in HCO_3^- is added to the normal value of HCO_3^- to determine the predicted HCO_3^- concentration.

$$\text{Increase in } P_{CO_2} = 69 \text{ mm Hg} - 40 \text{ mm Hg}$$
$$= 29 \text{ mm Hg}$$

$$\text{Predicted increase in } HCO_3^- = 29 \text{ mm Hg} \times 0.4 \text{ mEq/L per mm Hg}$$
$$= 11.6 \text{ mEq/L}$$

$$\text{Predicted } HCO_3^- \text{ concentration} = 24 \text{ mEq/L} + 11.6 \text{ mEq/L}$$
$$= 35.6 \text{ mEq/L}$$
In other words, if Bernice had simple chronic respiratory acidosis, her HCO_3^- concentration should have been 35.6 mEq/L, based on the expected renal compensation. At the initial visit, her actual HCO_3^- concentration was 34 mEq/L, which is very close to the predicted value. Therefore, we can conclude that Bernice had only one acid-base disorder at the earlier visit: simple chronic respiratory acidosis.

4. At the terminal admission, three changes in Bernice's blood values were noted. (1) Her P_O_2 was lower than it had been previously, (2) her HCO_3^- concentration had switched from being higher than normal to being lower than normal, and (3) her pH had become much more acidic. Her P_CO_2 was unchanged (still elevated, at 69 mm Hg).

Bernice's pH was more acidic at the time of her terminal admission because her HCO_3^- concentration had decreased. Recall from our earlier discussion that Bernice had "lived" with an elevated P_CO_2 because renal compensation elevated her HCO_3^- concentration, which brought her pH almost to normal. At the terminal admission, her HCO_3^- was no longer elevated; in fact, it was decreased to less than normal. Referring back to the Henderson-Hasselbalch equation, you can appreciate that either a decrease in the numerator (HCO_3^-) or an increase in the denominator (P_CO_2) causes a decrease in pH; if both changes occur simultaneously, the pH can become devastatingly low!

An important issue we must address is why Bernice's HCO_3^- was decreased at the terminal admission when it had been increased (by renal compensation) earlier. What process decreased her HCO_3^- concentration? The answer is that Bernice had developed a metabolic acidosis that was superimposed on her chronic respiratory acidosis. (In metabolic acidosis, excess fixed acid is buffered by extracellular HCO_3^-, which lowers the HCO_3^- concentration.) Although it is difficult to know with certainty the cause of this metabolic acidosis, one possibility is that lactic acidosis developed secondary to hypoxia. At the terminal admission, Bernice's P_O_2 was even lower (35 mm Hg) than it was at the earlier visit. As a result, O$_2$ delivery to the tissues was more severely compromised. As the tissues switched to anaerobic metabolism, lactic acid (a fixed acid) was produced, causing metabolic acidosis.

5. If the superimposed metabolic acidosis resulted from accumulation of lactic acid, Bernice's anion gap would have been increased. Lactic acid causes a type of metabolic acidosis that is accompanied by an increased concentration of unmeasured anions (lactate), which increases the anion gap.