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An Introduction to Model Building

1.1 An Introduction to Modeling
Operations research (often referred to as management science) is simply a scientific
approach to decision making that seeks to best design and operate a system, usually un-
der conditions requiring the allocation of scarce resources.

By a system, we mean an organization of interdependent components that work together
to accomplish the goal of the system. For example, Ford Motor Company is a system whose
goal consists of maximizing the profit that can be earned by producing quality vehicles.

The term operations research was coined during World War II when British military
leaders asked scientists and engineers to analyze several military problems such as the de-
ployment of radar and the management of convoy, bombing, antisubmarine, and mining
operations.

The scientific approach to decision making usually involves the use of one or more
mathematical models. A mathematical model is a mathematical representation of an ac-
tual situation that may be used to make better decisions or simply to understand the ac-
tual situation better. The following example should clarify many of the key terms used to
describe mathematical models.

Eli Daisy produces Wozac in huge batches by heating a chemical mixture in a pressur-
ized container. Each time a batch is processed, a different amount of Wozac is produced.
The amount produced is the process yield (measured in pounds). Daisy is interested in
understanding the factors that influence the yield of the Wozac production process. De-
scribe a model-building process for this situation.

Solution Daisy is first interested in determining the factors that influence the yield of the process.
This would be referred to as a descriptive model, because it describes the behavior of the
actual yield as a function of various factors. Daisy might determine (using regression
methods discussed in Chapter 24) that the following factors influence yield:

■ container volume in liters (V)

■ container pressure in milliliters (P)

■ container temperature in degrees Celsius (T)

■ chemical composition of the processed mixture

If we let A, B, and C be percentage of mixture made up of chemicals A, B, and C, then
Daisy might find, for example, that

(1) yield � 300 � .8V � .01P � .06T � .001T*P � .01T2 � .001P2

� 11.7A � 9.4B � 16.4C � 19A*B � 11.4A*C � 9.6B*C
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To determine this relationship, the yield of the process would have to be measured for
many different combinations of the previously listed factors. Knowledge of this equation
would enable Daisy to describe the yield of the production process once volume, pres-
sure, temperature, and chemical composition were known.

Prescriptive or Optimization Models

Most of the models discussed in this book will be prescriptive or optimization models.
A prescriptive model “prescribes” behavior for an organization that will enable it to best
meet its goal(s). The components of a prescriptive model include

■ objective function(s)

■ decision variables

■ constraints

In short, an optimization model seeks to find values of the decision variables that opti-
mize (maximize or minimize) an objective function among the set of all values for the
decision variables that satisfy the given constraints.

The Objective Function

Naturally, Daisy would like to maximize the yield of the process. In most models, there
will be a function we wish to maximize or minimize. This function is called the model’s
objective function. Of course, to maximize the process yield we need to find the values
of V, P, T, A, B, and C that make (1) as large as possible.

In many situations, an organization may have more than one objective. For example, in
assigning students to the two high schools in Bloomington, Indiana, the Monroe County
School Board stated that the assignment of students involved the following objectives:

■ Equalize the number of students at the two high schools.

■ Minimize the average distance students travel to school.

■ Have a diverse student body at both high schools.

Multiple objective decision-making problems are discussed in Sections 4.14 and 11.13.

The Decision Variables

The variables whose values are under our control and influence the performance of the
system are called decision variables. In our example, V, P, T, A, B, and C are decision
variables. Most of this book will be devoted to a discussion of how to determine the value
of decision variables that maximize (sometimes minimize) an objective function.

Constraints

In most situations, only certain values of decision variables are possible. For example, cer-
tain volume, pressure, and temperature combinations might be unsafe. Also, A B, and C
must be nonnegative numbers that add to 1. Restrictions on the values of decision vari-
ables are called constraints. Suppose the following:
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■ Volume must be between 1 and 5 liters.

■ Pressure must be between 200 and 400 milliliters.

■ Temperature must be between 100 and 200 degrees Celsius.

■ Mixture must be made up entirely of A, B, and C.

■ For the drug to properly perform, only half the mixture at most can be product A.

These constraints can be expressed mathematically by the following constraints:

V � 5

V � 1

P � 400

P � 200

T � 200

T � 100

A � 0

B � 0

A � B � C � 1

A � 5

The Complete Optimization Model

After letting z represent the value of the objective function, our entire optimization model
may be written as follows:

Maximize z � 300 � .8V � .01P � .06T � .001T*P � .01T2 � .001P2

� 11.7A � 9.4B � 16.4C � 19A*B � 11.4A*C � 9.6B*C

Subject to (s.t.)

V � 5

V � 1

P � 400

P � 200

T � 200

T � 100

A � 0

B � 0

C � 0

A � B � C � 1

A � 5

Any specification of the decision variables that satisfies all of the model’s constraints is
said to be in the feasible region. For example, V � 2, P � 300, T � 150, A � .4, B �
.3, and C � .1 is in the feasible region. An optimal solution to an optimization model is
any point in the feasible region that optimizes (in this case, maximizes) the objective func-
tion. Using the LINGO package that comes with this book, it can be determined that the
optimal solution to this model is V � 5, P � 200, T � 100, A � .294, B � 0, C � .706,
and z � 183.38. Thus, a maximum yield of 183.38 pounds can be obtained with a 5-liter
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container, pressure of 200 milliliters, temperature of 100 degrees Celsius, and 29% A and
71% C. This means no other feasible combination of decision variables can obtain a yield
exceeding 183.38 pounds.

Static and Dynamic Models

A static model is one in which the decision variables do not involve sequences of deci-
sions over multiple periods. A dynamic model is a model in which the decision variables
do involve sequences of decisions over multiple periods. Basically, in a static model we
solve a “one-shot” problem whose solutions prescribe optimal values of decision variables
at all points in time. Example 1 is an example of a static model; the optimal solution will
tell Daisy how to maximize yield at all points in time.

For an example of a dynamic model, consider a company (call it Sailco) that must de-
termine how to minimize the cost of meeting (on time) the demand for sailboats during
the next year. Clearly Sailco’s must determine how many sailboats it will produce during
each of the next four quarters. Sailco’s decisions involve decisions made over multiple pe-
riods, hence a model of Sailco’s problem (see Section 3.10) would be a dynamic model.

Linear and Nonlinear Models

Suppose that whenever decision variables appear in the objective function and in the con-
straints of an optimization model, the decision variables are always multiplied by constants
and added together. Such a model is a linear model. If an optimization model is not lin-
ear, then it is a nonlinear model. In the constraints of Example 1, the decision variables
are always multiplied by constants and added together. Thus, Example 1’s constraints pass
the test for a linear model. However, in the objective function for Example 1, the terms
.001T*P, �.01T2, 19A*B, 11.4A*C, and �9.6B*C make the model nonlinear. In general,
nonlinear models are much harder to solve than linear models. We will discuss linear
models in Chapters 2 through 10. Nonlinear models will be discussed in Chapter 11.

Integer and Noninteger Models

If one or more decision variables must be integer, then we say that an optimization model
is an integer model. If all the decision variables are free to assume fractional values, then
the optimization model is a noninteger model. Clearly, volume, temperature, pressure,
and percentage composition of our inputs may all assume fractional values. Thus, Exam-
ple 1 is a noninteger model. If the decision variables in a model represent the number of
workers starting work during each shift at a fast-food restaurant, then clearly we have an
integer model. Integer models are much harder to solve than nonlinear models. They will
be discussed in detail in Chapter 9.

Deterministic and Stochastic Models

Suppose that for any value of the decision variables, the value of the objective function
and whether or not the constraints are satisfied is known with certainty. We then have a
deterministic model. If this is not the case, then we have a stochastic model. All mod-
els in the first 12 chapters will be deterministic models. Stochastic models are covered in
Chapters 13, 16, 17, and 19–24.
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If we view Example 1 as a deterministic model, then we are making the (unrealistic)
assumption that for given values of V, P, T, A, B, and C, the process yield will always be
the same. This is highly unlikely. We can view (1) as a representation of the average yield
of the process for given values of the decision variables. Then our objective is to find val-
ues of the decision variables that maximize the average yield of the process.

We can often gain useful insights into optimal decisions by using a deterministic model
in a situation where a stochastic model is more appropriate. Consider Sailco’s problem of
minimizing the cost of meeting the demand (on time) for sailboats. The uncertainty about
future demand for sailboats implies that for a given production schedule, we do not know
whether demand is met on time. This leads us to believe that a stochastic model is needed
to model Sailco’s situation. We will see in Section 3.10, however, that we can develop a
deterministic model for this situation that yields good decisions for Sailco.

1.2 The Seven-Step Model-Building Process
When operations research is used to solve an organization’s problem, the following seven-
step model-building procedure should be followed:

Step 1: Formulate the Problem The operations researcher first defines the organization’s
problem. Defining the problem includes specifying the organization’s objectives and the
parts of the organization that must be studied before the problem can be solved. In Ex-
ample 1, the problem was to determine how to maximize the yield from a batch of Wozac.

Step 2: Observe the System Next, the operations researcher collects data to estimate the
value of parameters that affect the organization’s problem. These estimates are used to de-
velop (in step 3) and evaluate (in step 4) a mathematical model of the organization’s prob-
lem. For example, in Example 1, data would be collected in an attempt to determine how
the values of T, P, V, A, B, and C influence process yield.

Step 3: Formulate a Mathematical Model of the Problem In this step, the operations re-
searcher develops a mathematical model of the problem. In this book, we will describe
many mathematical techniques that can be used to model systems. For Example 1, our
optimization model would be the result of step 3.

Step 4: Verify the Model and Use the Model for Prediction The operations researcher now
tries to determine if the mathematical model developed in step 3 is an accurate represen-
tation of reality. For example, to validate our model, we might check and see if (1) accu-
rately represents yield for values of the decision variables that were not used to estimate
(1). Even if a model is valid for the current situation, we must be aware of blindly ap-
plying it. For example, if the government placed new restrictions on Wozac, then we might
have to add new constraints to our model, and the yield of the process [and Equation (1)]
might change.

Step 5: Select a Suitable Alternative Given a model and a set of alternatives, the operations
researcher now chooses the alternative that best meets the organization’s objectives.
(There may be more than one!) For instance, our model enabled us to determine that yield
was maximized with V � 5, P � 200, T � 100, A � .294, B � 0, C � .706, and z �
183.38.

Step 6: Present the Results and Conclusion of the Study to the Organization In this step, the 
operations researcher presents the model and recommendation from step 5 to the decision-
making individual or group. In some situations, one might present several alternatives and
let the organization choose the one that best meets its needs. After presenting the results
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of the operations research study, the analyst may find that the organization does not ap-
prove of the recommendation. This may result from incorrect definition of the organiza-
tion’s problems or from failure to involve the decision maker from the start of the project.
In this case, the operations researcher should return to step 1, 2, or 3.

Step 7: Implement and Evaluate Recommendations If the organization has accepted the
study, then the analyst aids in implementing the recommendations. The system must be
constantly monitored (and updated dynamically as the environment changes) to ensure
that the recommendations enable the organization to meet its objectives.

In what follows, we discuss three successful management science applications. We will
give a detailed (but nonquantitative) description of each application. We will tie our discus-
sion of each application to the seven-step model-building process described in Section 1.2.

1.3 CITGO Petroleum
Klingman et al. (1987) applied a variety of management-science techniques to CITGO Pe-
troleum. Their work saved the company an estimated $70 million per year. CITGO is an
oil-refining and -marketing company that was purchased by Southland Corporation (the
owners of the 7-Eleven stores). We will focus on two aspects of the CITGO team’s work:

1 a mathematical model to optimize operation of CITGO’s refineries, and

2 a mathematical model—supply distribution marketing (SDM) system—that was used
to develop an 11-week supply, distribution, and marketing plan for the entire business.

Optimizing Refinery Operations

Step 1 Klingman et al. wanted to minimize the cost of operating CITGO’s refineries.

Step 2 The Lake Charles, Louisiana, refinery was closely observed in an attempt to es-
timate key relationships such as:

1 How the cost of producing each of CITGO’s products (motor fuel, no. 2 fuel oil, tur-
bine fuel, naptha, and several blended motor fuels) depends on the inputs used to produce
each product.

2 The amount of energy needed to produce each product. This required the installation
of a new metering system.

3 The yield associated with each input–output combination. For example, if 1 gallon of
crude oil would yield .52 gallons of motor fuel, then the yield would equal 52%.

4 To reduce maintenance costs, data were collected on parts inventories and equipment
breakdowns. Obtaining accurate data required the installation of a new database-management
system and integrated maintenance-information system. A process control system was also
installed to accurately monitor the inputs and resources used to manufacture each product.

Step 3 Using linear programming (LP), a model was developed to optimize refinery op-
erations. The model determines the cost-minimizing method for mixing or blending to-
gether inputs to produce desired outputs. The model contains constraints that ensure that
inputs are blended so that each output is of the desired quality. Blending constraints are
discussed in Section 3.8. The model ensures that plant capacities are not exceeded and al-
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lows for the fact that each refinery may carry an inventory of each end product. Sections
3.10 and 4.12 discuss inventory constraints.

Step 4 To validate the model, inputs and outputs from the Lake Charles refinery were
collected for one month. Given the actual inputs used at the refinery during that month,
the actual outputs were compared to those predicted by the model. After extensive
changes, the model’s predicted outputs were close to the actual outputs.

Step 5 Running the LP yielded a daily strategy for running the refinery. For instance, the
model might, say, produce 400,000 gallons of turbine fuel using 300,000 gallons of crude
1 and 200,000 gallons of crude 2.

Steps 6 and 7 Once the database and process control were in place, the model was used
to guide day-to-day refinery operations. CITGO estimated that the overall benefits of the
refinery system exceeded $50 million annually.

The Supply Distribution Marketing (SDM) System

Step 1 CITGO wanted a mathematical model that could be used to make supply, distri-
bution, and marketing decisions such as:

1 Where should crude oil be purchased?

2 Where should products be sold?

3 What price should be charged for products?

4 How much of each product should be held in inventory?

The goal, of course, was to maximize the profitability associated with these decisions.

Step 2 A database that kept track of sales, inventory, trades, and exchanges of all refined
products was installed. Also, regression analysis (see Chapter 24) was used to develop
forecasts for wholesale prices and wholesale demand for each CITGO product.

Steps 3 and 5 A minimum-cost network flow model (MCNFM) (see Section 7.4) is used
to determine an 11-week supply, marketing, and distribution strategy. The model makes
all decisions mentioned in step 1. A typical model run that involved 3,000 equations and
15,000 decision variables required only 30 seconds on an IBM 4381.

Step 4 The forecasting modules are continuously evaluated to ensure that they continue
to give accurate forecasts.

Steps 6 and 7 Implementing the SDM required several organizational changes. A new
vice-president was appointed to coordinate the operation of the SDM and LP refinery
model. The product supply and product scheduling departments were combined to im-
prove communication and information flow.

1.4 San Francisco Police Department Scheduling
Taylor and Huxley (1989) developed a police patrol scheduling system (PPSS). All San
Francisco (SF) police precincts use PPSS to schedule their officers. It is estimated that
PPSS saves the SF police more than $5 million annually. Other cities such as Virginia
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E X A M P L E  1 Giapetto’s Woodcarving

Introduction to Linear Programming

Linear programming (LP) is a tool for solving optimization problems. In 1947, George Dantzig de-
veloped an efficient method, the simplex algorithm, for solving linear programming problems (also
called LP). Since the development of the simplex algorithm, LP has been used to solve optimiza-
tion problems in industries as diverse as banking, education, forestry, petroleum, and trucking. In
a survey of Fortune 500 firms, 85% of the respondents said they had used linear programming.
As a measure of the importance of linear programming in operations research, approximately 70%
of this book will be devoted to linear programming and related optimization techniques.

In Section 3.1, we begin our study of linear programming by describing the general char-
acteristics shared by all linear programming problems. In Sections 3.2 and 3.3, we learn how
to solve graphically those linear programming problems that involve only two variables. Solv-
ing these simple LPs will give us useful insights for solving more complex LPs. The remainder
of the chapter explains how to formulate linear programming models of real-life situations.

3.1 What Is a Linear Programming Problem?
In this section, we introduce linear programming and define important terms that are used
to describe linear programming problems.

Giapetto’s Woodcarving, Inc., manufactures two types of wooden toys: soldiers and trains.
A soldier sells for $27 and uses $10 worth of raw materials. Each soldier that is manu-
factured increases Giapetto’s variable labor and overhead costs by $14. A train sells for
$21 and uses $9 worth of raw materials. Each train built increases Giapetto’s variable la-
bor and overhead costs by $10. The manufacture of wooden soldiers and trains requires
two types of skilled labor: carpentry and finishing. A soldier requires 2 hours of finishing
labor and 1 hour of carpentry labor. A train requires 1 hour of finishing and 1 hour of car-
pentry labor. Each week, Giapetto can obtain all the needed raw material but only 100 fin-
ishing hours and 80 carpentry hours. Demand for trains is unlimited, but at most 40 sol-
diers are bought each week. Giapetto wants to maximize weekly profit (revenues � costs).
Formulate a mathematical model of Giapetto’s situation that can be used to maximize Gi-
apetto’s weekly profit.

Solution In developing the Giapetto model, we explore characteristics shared by all linear pro-
gramming problems.

Decision Variables We begin by defining the relevant decision variables. In any linear
programming model, the decision variables should completely describe the decisions to
be made (in this case, by Giapetto). Clearly, Giapetto must decide how many soldiers and
trains should be manufactured each week. With this in mind, we define



x1 � number of soldiers produced each week

x2 � number of trains produced each week

Objective Function In any linear programming problem, the decision maker wants to max-
imize (usually revenue or profit) or minimize (usually costs) some function of the deci-
sion variables. The function to be maximized or minimized is called the objective func-
tion. For the Giapetto problem, we note that fixed costs (such as rent and insurance) do
not depend on the values of x1 and x2. Thus, Giapetto can concentrate on maximizing
(weekly revenues) � (raw material purchase costs) � (other variable costs).

Giapetto’s weekly revenues and costs can be expressed in terms of the decision vari-
ables x1 and x2. It would be foolish for Giapetto to manufacture more soldiers than can
be sold, so we assume that all toys produced will be sold. Then

Weekly revenues � weekly revenues from soldiers

� weekly revenues from trains
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Also,

Weekly raw material costs � 10x1 � 9x2

Other weekly variable costs � 14x1 � 10x2

Then Giapetto wants to maximize

(27x1 � 21x2) � (10x1 � 9x2) � (14x1 � 10x2) � 3x1 � 2x2

Another way to see that Giapetto wants to maximize 3x1 � 2x2 is to note that

Weekly revenues � weekly contribution to profit from soldiers

� weekly nonfixed costs � weekly contribution to profit from trains
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Also,

� 27 � 10 � 14 � 3

� 21 � 9 � 10 � 2

Then, as before, we obtain

Weekly revenues � weekly nonfixed costs � 3x1 � 2x2

Thus, Giapetto’s objective is to choose x1 and x2 to maximize 3x1 � 2x2. We use the vari-
able z to denote the objective function value of any LP. Giapetto’s objective function is

Maximize z � 3x1 � 2x2 (1)

(In the future, we will abbreviate “maximize” by max and “minimize” by min.) The co-
efficient of a variable in the objective function is called the objective function coefficient
of the variable. For example, the objective function coefficient for x1 is 3, and the objec-
tive function coefficient for x2 is 2. In this example (and in many other problems), the ob-

Contribution to profit
���

Contribution to profit
���

contribution to profit
���

contribution to profit
���
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jective function coefficient for each variable is simply the contribution of the variable to
the company’s profit.

Constraints As x1 and x2 increase, Giapetto’s objective function grows larger. This means
that if Giapetto were free to choose any values for x1 and x2, the company could make an
arbitrarily large profit by choosing x1 and x2 to be very large. Unfortunately, the values of
x1 and x2 are limited by the following three restrictions (often called constraints):

Constraint 1 Each week, no more than 100 hours of finishing time may be used.

Constraint 2 Each week, no more than 80 hours of carpentry time may be used.

Constraint 3 Because of limited demand, at most 40 soldiers should be produced each
week.

The amount of raw material available is assumed to be unlimited, so no restrictions have
been placed on this.

The next step in formulating a mathematical model of the Giapetto problem is to ex-
press Constraints 1–3 in terms of the decision variables x1 and x2. To express Constraint
1 in terms of x1 and x2, note that
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Now Constraint 1 may be expressed by

2x1 � x2 � 100 (2)

Note that the units of each term in (2) are finishing hours per week. For a constraint to
be reasonable, all terms in the constraint must have the same units. Otherwise one is
adding apples and oranges, and the constraint won’t have any meaning.

To express Constraint 2 in terms of x1 and x2, note that
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Then Constraint 2 may be written as

x1 � x2 � 80 (3)

Again, note that the units of each term in (3) are the same (in this case, carpentry hours
per week).

Finally, we express the fact that at most 40 soldiers per week can be sold by limiting the
weekly production of soldiers to at most 40 soldiers. This yields the following constraint:

x1 � 40 (4)

Thus (2)–(4) express Constraints 1–3 in terms of the decision variables; they are called
the constraints for the Giapetto linear programming problem. The coefficients of the de-
cision variables in the constraints are called technological coefficients. This is because
the technological coefficients often reflect the technology used to produce different prod-
ucts. For example, the technological coefficient of x2 in (3) is 1, indicating that a soldier
requires 1 carpentry hour. The number on the right-hand side of each constraint is called

Total carpentry hrs.
���

Total finishing hrs.
��
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the constraint’s right-hand side (or rhs). Often the rhs of a constraint represents the quan-
tity of a resource that is available.

Sign Restrictions To complete the formulation of a linear programming problem, the fol-
lowing question must be answered for each decision variable: Can the decision variable
only assume nonnegative values, or is the decision variable allowed to assume both pos-
itive and negative values?

If a decision variable xi can only assume nonnegative values, then we add the sign re-
striction xi � 0. If a variable xi can assume both positive and negative (or zero) values,
then we say that xi is unrestricted in sign (often abbreviated urs). For the Giapetto prob-
lem, it is clear that x1 � 0 and x2 � 0. In other problems, however, some variables may
be urs. For example, if xi represented a firm’s cash balance, then xi could be considered
negative if the firm owed more money than it had on hand. In this case, it would be ap-
propriate to classify xi as urs. Other uses of urs variables are discussed in Section 4.12.

Combining the sign restrictions x1 � 0 and x2 � 0 with the objective function (1) and
Constraints (2)–(4) yields the following optimization model:

max z � 3x1 � 2x2 (Objective function) (1)

subject to (s.t.)

2x1 � x2 � 100 (Finishing constraint) (2)

x1 � x2 � 80 (Carpentry constraint) (3)

x1 � x2 � 40 (Constraint on demand for soldiers) (4)

x1 � x2 � 0 (Sign restriction)† (5)

x1 � x2 � 0 (Sign restriction) (6)

“Subject to” (s.t.) means that the values of the decision variables x1 and x2 must satisfy
all constraints and all sign restrictions.

Before formally defining a linear programming problem, we define the concepts of linear
function and linear inequality.

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) of x1, x2, . . . , xn is a linear function if and only if
for some set of constants c1, c2, . . . , cn, f(x1, x2, . . . , xn) � c1x1 � c2x2 � ��� �
cnxn. ■

For example, f (x1, x2) � 2x1 � x2 is a linear function of x1 and x2, but f (x1, x2) � x2
1x2

is not a linear function of x1 and x2.

D E F I N I T I O N ■ For any linear function f (x1, x2, . . . , xn) and any number b, the inequalities f (x1,
x2, . . . , xn) � b and f (x1, x2, . . . , xn) � b are linear inequalities. ■

Thus, 2x1 � 3x2 � 3 and 2x1 � x2 � 3 are linear inequalities, but x2
1x2 � 3 is not a

linear inequality.
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D E F I N I T I O N ■ A linear programming problem (LP) is an optimization problem for which we
do the following:

1 We attempt to maximize (or minimize) a linear function of the decision vari-
ables. The function that is to be maximized or minimized is called the objective
function.

2 The values of the decision variables must satisfy a set of constraints. Each con-
straint must be a linear equation or linear inequality.

3 A sign restriction is associated with each variable. For any variable xi, the sign
restriction specifies that xi must be either nonnegative (xi � 0) or unrestricted in
sign (urs). ■

Because Giapetto’s objective function is a linear function of x1 and x2, and all of Gia-
petto’s constraints are linear inequalities, the Giapetto problem is a linear programming
problem. Note that the Giapetto problem is typical of a wide class of linear programming
problems in which a decision maker’s goal is to maximize profit subject to limited resources.

The Proportionality and Additivity Assumptions

The fact that the objective function for an LP must be a linear function of the decision
variables has two implications.

1 The contribution of the objective function from each decision variable is proportional
to the value of the decision variable. For example, the contribution to the objective func-
tion from making four soldiers (4 	 3 � $12) is exactly four times the contribution to
the objective function from making one soldier ($3).

2 The contribution to the objective function for any variable is independent of the val-
ues of the other decision variables. For example, no matter what the value of x2, the man-
ufacture of x1 soldiers will always contribute 3x1 dollars to the objective function.

Analogously, the fact that each LP constraint must be a linear inequality or linear equa-
tion has two implications.

1 The contribution of each variable to the left-hand side of each constraint is propor-
tional to the value of the variable. For example, it takes exactly three times as many fin-
ishing hours (2 	 3 � 6 finishing hours) to manufacture three soldiers as it takes to man-
ufacture one soldier (2 finishing hours).

2 The contribution of a variable to the left-hand side of each constraint is independent
of the values of the variable. For example, no matter what the value of x1, the manufac-
ture of x2 trains uses x2 finishing hours and x2 carpentry hours.

The first implication given in each list is called the Proportionality Assumption of Lin-
ear Programming. Implication 2 of the first list implies that the value of the objective
function is the sum of the contributions from individual variables, and implication 2 of
the second list implies that the left-hand side of each constraint is the sum of the contri-
butions from each variable. For this reason, the second implication in each list is called
the Additivity Assumption of Linear Programming.

For an LP to be an appropriate representation of a real-life situation, the decision vari-
ables must satisfy both the Proportionality and Additivity Assumptions. Two other as-
sumptions must also be satisfied before an LP can appropriately represent a real situation:
the Divisibility and Certainty Assumptions.
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The Divisibility Assumption

The Divisibility Assumption requires that each decision variable be allowed to assume
fractional values. For example, in the Giapetto problem, the Divisibility Assumption im-
plies that it is acceptable to produce 1.5 soldiers or 1.63 trains. Because Giapetto can-
not actually produce a fractional number of trains or soldiers, the Divisibility Assump-
tion is not satisfied in the Giapetto problem. A linear programming problem 
in which some or all of the variables must be nonnegative integers is called an integer 
programming problem. The solution of integer programming problems is discussed in
Chapter 9.

In many situations where divisibility is not present, rounding off each variable in the
optimal LP solution to an integer may yield a reasonable solution. Suppose the optimal
solution to an LP stated that an auto company should manufacture 150,000.4 compact cars
during the current year. In this case, you could tell the auto company to manufacture
150,000 or 150,001 compact cars and be fairly confident that this would reasonably ap-
proximate an optimal production plan. On the other hand, if the number of missile sites
that the United States should use were a variable in an LP and the optimal LP solution
said that 0.4 missile sites should be built, it would make a big difference whether we
rounded the number of missile sites down to 0 or up to 1. In this situation, the integer
programming methods of Chapter 9 would have to be used, because the number of mis-
sile sites is definitely not divisible.

The Certainty Assumption

The Certainty Assumption is that each parameter (objective function coefficient, right-
hand side, and technological coefficient) is known with certainty. If we were unsure of the
exact amount of carpentry and finishing hours required to build a train, the Certainty As-
sumption would be violated.

Feasible Region and Optimal Solution

Two of the most basic concepts associated with a linear programming problem are feasi-
ble region and optimal solution. For defining these concepts, we use the term point to
mean a specification of the value for each decision variable.

D E F I N I T I O N ■ The feasible region for an LP is the set of all points that satisfies all the LP’s
constraints and sign restrictions. ■

For example, in the Giapetto problem, the point (x1 � 40, x2 � 20) is in the feasible
region. Note that x1 � 40 and x2 � 20 satisfy the constraints (2)–(4) and the sign re-
strictions (5)–(6):

Constraint (2), 2x1 � x2 � 100, is satisfied, because 2(40) � 20 � 100.

Constraint (3), x1 � x2 � 80, is satisfied, because 40 � 20 � 80.

Constraint (4), x1 � 40, is satisfied, because 40 � 40.

Restriction (5), x1 � 0, is satisfied, because 40 � 0.

Restriction (6), x2 � 0, is satisfied, because 20 � 0.
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1 Farmer Jones must determine how many acres of corn
and wheat to plant this year. An acre of wheat yields 25
bushels of wheat and requires 10 hours of labor per week.
An acre of corn yields 10 bushels of corn and requires 4
hours of labor per week. All wheat can be sold at $4 a
bushel, and all corn can be sold at $3 a bushel. Seven acres
of land and 40 hours per week of labor are available.
Government regulations require that at least 30 bushels of
corn be produced during the current year. Let x1 � number
of acres of corn planted, and x2 � number of acres of wheat
planted. Using these decision variables, formulate an LP
whose solution will tell Farmer Jones how to maximize the
total revenue from wheat and corn.

2 Answer these questions about Problem 1.
a Is (x1 � 2, x2 � 3) in the feasible region?
b Is (x1 � 4, x2 � 3) in the feasible region?
c Is (x1 � 2, x2 � �1) in the feasible region?
d Is (x1 � 3, x2 � 2) in the feasible region?

3 Using the variables x1 � number of bushels of corn

On the other hand, the point (x1 � 15, x2 � 70) is not in the feasible region, because even
though x1 � 15 and x2 � 70 satisfy (2), (4), (5), and (6), they fail to satisfy (3): 15 � 70
is not less than or equal to 80. Any point that is not in an LP’s feasible region is said to
be an infeasible point. As another example of an infeasible point, consider (x1 � 40, 
x2 � �20). Although this point satisfies all the constraints and the sign restriction (5), it
is infeasible because it fails to satisfy the sign restriction (6), x2 � 0. The feasible region
for the Giapetto problem is the set of possible production plans that Giapetto must con-
sider in searching for the optimal production plan.

D E F I N I T I O N ■ For a maximization problem, an optimal solution to an LP is a point in the
feasible region with the largest objective function value. Similarly, for a
minimization problem, an optimal solution is a point in the feasible region with
the smallest objective function value. ■

Most LPs have only one optimal solution. However, some LPs have no optimal 
solution, and some LPs have an infinite number of solutions (these situations are 
discussed in Section 3.3). In Section 3.2, we show that the unique optimal solution to 
the Giapetto problem is (x1 � 20, x2 � 60). This solution yields an objective function 
value of

z � 3x1 � 2x2 � 3(20) � 2(60) � $180

When we say that (x1 � 20, x2 � 60) is the optimal solution to the Giapetto problem, we
are saying that no point in the feasible region has an objective function value that exceeds
180. Giapetto can maximize profit by building 20 soldiers and 60 trains each week. If Gi-
apetto were to produce 20 soldiers and 60 trains each week, the weekly profit would be
$180 less weekly fixed costs. For example, if Giapetto’s only fixed cost were rent of $100
per week, then weekly profit would be 180 � 100 � $80 per week.

P R O B L E M S
Group A

produced and x2 � number of bushels of wheat produced,
reformulate Farmer Jones’s LP.

4 Truckco manufactures two types of trucks: 1 and 2.
Each truck must go through the painting shop and assembly
shop. If the painting shop were completely devoted to
painting Type 1 trucks, then 800 per day could be painted;
if the painting shop were completely devoted to painting
Type 2 trucks, then 700 per day could be painted. If the
assembly shop were completely devoted to assembling truck
1 engines, then 1,500 per day could be assembled; if the
assembly shop were completely devoted to assembling truck
2 engines, then 1,200 per day could be assembled. Each
Type 1 truck contributes $300 to profit; each Type 2 truck
contributes $500. Formulate an LP that will maximize
Truckco’s profit.

Group B

5 Why don’t we allow an LP to have 
 or � constraints?



3.2 The Graphical Solution of Two-Variable Linear Programming Problems
Any LP with only two variables can be solved graphically. We always label the variables
x1 and x2 and the coordinate axes the x1 and x2 axes. Suppose we want to graph the set
of points that satisfies

2x1 � 3x2 � 6 (7)

The same set of points (x1, x2) satisfies

3x2 � 6 � 2x1

This last inequality may be rewritten as

x2 � �
1
3

�(6 � 2x1) � 2 � �
2
3

�x1 (8)

Because moving downward on the graph decreases x2 (see Figure 1), the set of points that
satisfies (8) and (7) lies on or below the line x2 � 2 � �

2
3

�x1. This set of points is indicated 
by darker shading in Figure 1. Note, however, that x2 � 2 � �

2
3

�x1, 3x2 � 6 � 2x1, and 2x1 �
3x2 � 6 are all the same line. This means that the set of points satisfying (7) lies on or be-
low the line 2x1 � 3x2 � 6. Similarly, the set of points satisfying 2x1 � 3x2 � 6 lies on or
above the line 2x1 � 3x2 � 6. (These points are shown by lighter shading in Figure 1.)

Consider a linear inequality constraint of the form f(x1, x2) � b or f(x1, x2) � b. In
general, it can be shown that in two dimensions, the set of points that satisfies a linear in-
equality includes the points on the line f(x1, x2) � b, defining the inequality plus all points
on one side of the line.

There is an easy way to determine the side of the line for which an inequality such as 
f(x1, x2) � b or f(x1, x2) � b is satisfied. Just choose any point P that does not satisfy the line
f(x1, x2) � b. Determine whether P satisfies the inequality. If it does, then all points on the
same side as P of f(x1, x2) � b will satisfy the inequality. If P does not satisfy the inequality,
then all points on the other side of f(x1, x2) � b, which does not contain P, will satisfy the in-
equality. For example, to determine whether 2x1 � 3x2 � 6 is satisfied by points above or be-
low the line 2x1 � 3x2 � 6, we note that (0, 0) does not satisfy 2x1 � 3x2 � 6. Because (0,
0) is below the line 2x1 � 3x2 � 6, the set of points satisfying 2x1 � 3x2 � 6 includes the
line 2x1 � 3x2 � 6 and the points above the line 2x1 � 3x2 � 6. This agrees with Figure 1.
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Finding the Feasible Solution

We illustrate how to solve two-variable LPs graphically by solving the Giapetto problem.
To begin, we graphically determine the feasible region for Giapetto’s problem. The feasi-
ble region for the Giapetto problem is the set of all points (x1, x2) satisfying

2x1 � x2 � 100 (Constraints) (2)

x1 � x2 � 80 (3)

x1 � x2 � 40 (4)

x1 � x2 � 0 (Sign restrictions) (5)

x1 � x2 � 0 (6)

For a point (x1, x2) to be in the feasible region, (x1, x2) must satisfy all the inequalities
(2)–(6). Note that the only points satisfying (5) and (6) lie in the first quadrant of the x1–x2

plane. This is indicated in Figure 2 by the arrows pointing to the right from the x2 axis
and upward from the x1 axis. Thus, any point that is outside the first quadrant cannot be
in the feasible region. This means that the feasible region will be the set of points in the
first quadrant that satisfies (2)–(4).

Our method for determining the set of points that satisfies a linear inequality will also
identify those that meet (2)–(4). From Figure 2, we see that (2) is satisfied by all points
below or on the line AB (AB is the line 2x1 � x2 � 100). Inequality (3) is satisfied by all
points on or below the line CD (CD is the line x1 � x2 � 80). Finally, (4) is satisfied by
all points on or to the left of line EF (EF is the line x1 � 40). The side of a line that sat-
isfies an inequality is indicated by the direction of the arrows in Figure 2.

From Figure 2, we see that the set of points in the first quadrant that satisfies (2), (3),
and (4) is bounded by the five-sided polygon DGFEH. Any point on this polygon or in
its interior is in the feasible region. Any other point fails to satisfy at least one of the in-
equalities (2)–(6). For example, the point (40, 30) lies outside DGFEH because it is above
the line segment AB. Thus (40, 30) is infeasible, because it fails to satisfy (2).
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An easy way to find the feasible region is to determine the set of infeasible points. Note
that all points above line AB in Figure 2 are infeasible, because they fail to satisfy (2).
Similarly, all points above CD are infeasible, because they fail to satisfy (3). Also, all
points to the right of the vertical line EF are infeasible, because they fail to satisfy (4).
After these points are eliminated from consideration, we are left with the feasible region
(DGFEH).

Finding the Optimal Solution

Having identified the feasible region for the Giapetto problem, we now search for the op-
timal solution, which will be the point in the feasible region with the largest value of z �
3x1 � 2x2. To find the optimal solution, we need to graph a line on which all points have
the same z-value. In a max problem, such a line is called an isoprofit line (in a min prob-
lem, an isocost line). To draw an isoprofit line, choose any point in the feasible region
and calculate its z-value. Let us choose (20, 0). For (20, 0), z � 3(20) � 2(0) � 60. Thus,
(20, 0) lies on the isoprofit line z � 3x1 � 2x2 � 60. Rewriting 3x1 � 2x2 � 60 as x2 �
30 � �

3
2

�x1, we see that the isoprofit line 3x1 � 2x2 � 60 has a slope of ��
3
2

�. Because all
isoprofit lines are of the form 3x1 � 2x2 � constant, all isoprofit lines have the same
slope. This means that once we have drawn one isoprofit line, we can find all other iso-
profit lines by moving parallel to the isoprofit line we have drawn.

It is now clear how to find the optimal solution to a two-variable LP. After you have
drawn a single isoprofit line, generate other isoprofit lines by moving parallel to the drawn
isoprofit line in a direction that increases z (for a max problem). After a point, the iso-
profit lines will no longer intersect the feasible region. The last isoprofit line intersecting
(touching) the feasible region defines the largest z-value of any point in the feasible re-
gion and indicates the optimal solution to the LP. In our problem, the objective function
z � 3x1 � 2x2 will increase if we move in a direction for which both x1 and x2 increase.
Thus, we construct additional isoprofit lines by moving parallel to 3x1 � 2x2 � 60 in a
northeast direction (upward and to the right). From Figure 2, we see that the isoprofit line
passing through point G is the last isoprofit line to intersect the feasible region. Thus, G
is the point in the feasible region with the largest z-value and is therefore the optimal so-
lution to the Giapetto problem. Note that point G is where the lines 2x1 � x2 � 100 and
x1 � x2 � 80 intersect. Solving these two equations simultaneously, we find that (x1 �
20, x2 � 60) is the optimal solution to the Giapetto problem. The optimal value of z may
be found by substituting these values of x1 and x2 into the objective function. Thus, the
optimal value of z is z � 3(20) � 2(60) � 180.

Binding and Nonbinding Constraints

Once the optimal solution to an LP has been found, it is useful (see Chapters 5 and 6) to
classify each constraint as being a binding constraint or a nonbinding constraint.

D E F I N I T I O N ■ A constraint is binding if the left-hand side and the right-hand side of the
constraint are equal when the optimal values of the decision variables are
substituted into the constraint. ■

Thus, (2) and (3) are binding constraints.
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D E F I N I T I O N ■ A constraint is nonbinding if the left-hand side and the right-hand side of the
constraint are unequal when the optimal values of the decision variables are
substituted into the constraint. ■

Because x1 � 20 is less than 40, (4) is a nonbinding constraint.

Convex Sets, Extreme Points, and LP

The feasible region for the Giapetto problem is an example of a convex set.

D E F I N I T I O N ■ A set of points S is a convex set if the line segment joining any pair of points in
S is wholly contained in S. ■

Figure 3 gives four illustrations of this definition. In Figures 3a and 3b, each line seg-
ment joining two points in S contains only points in S. Thus, in both these figures, S is
convex. In Figures 3c and 3d, S is not convex. In each figure, points A and B are in S, but
there are points on the line segment AB that are not contained in S. In our study of linear
programming, a certain type of point in a convex set (called an extreme point) is of great
interest.

D E F I N I T I O N ■ For any convex set S, a point P in S is an extreme point if each line segment that
lies completely in S and contains the point P has P as an endpoint of the line
segment. ■

For example, in Figure 3a, each point on the circumference of the circle is an extreme
point of the circle. In Figure 3b, points A, B, C, and D are extreme points of S. Although
point E is on the boundary of S in Figure 3b, E is not an extreme point of S. This is be-
cause E lies on the line segment AB (AB lies completely in S), and E is not an endpoint of
the line segment AB. Extreme points are sometimes called corner points, because if the
set S is a polygon, the extreme points of S will be the vertices, or corners, of the polygon.

The feasible region for the Giapetto problem is a convex set. This is no accident: It can
be shown that the feasible region for any LP will be a convex set. From Figure 2, we see
that the extreme points of the feasible region are simply points D, F, E, G, and H. It can
be shown that the feasible region for any LP has only a finite number of extreme points.
Also note that the optimal solution to the Giapetto problem (point G) is an extreme point
of the feasible region. It can be shown that any LP that has an optimal solution has an
extreme point that is optimal. This result is very important, because it reduces the set of
points that yield an optimal solution from the entire feasible region (which generally con-
tains an infinite number of points) to the set of extreme points (a finite set).
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For the Giapetto problem, it is easy to see why the optimal solution must be an extreme
point of the feasible region. We note that z increases as we move isoprofit lines in a northeast
direction, so the largest z-value in the feasible region must occur at some point P that has no
points in the feasible region northeast of P. This means that the optimal solution must lie some-
where on the boundary of the feasible region DGFEH. The LP must have an extreme point
that is optimal, because for any line segment on the boundary of the feasible region, the largest
z-value on that line segment must be assumed at one of the endpoints of the line segment.

To see this, look at the line segment FG in Figure 2. FG is part of the line 2x1 �
x2 � 100 and has a slope of �2. If we move along FG and decrease x1 by 1, then x2 will
increase by 2, and the value of z changes as follows: 3x1 goes down by 3(1) � 3, and 2x2

goes up by 2(2) � 4. Thus, in total, z increases by 4 � 3 � 1. This means that moving
along FG in a direction of decreasing x1 increases z. Thus, the value of z at point G must
exceed the value of z at any other point on the line segment FG.

A similar argument shows that for any objective function, the maximum value of z on
a given line segment must occur at an endpoint of the line segment. Therefore, for any
LP, the largest z-value in the feasible region must be attained at an endpoint of one of the
line segments forming the boundary of the feasible region. In short, one of the extreme
points of the feasible region must be optimal. (To test your understanding, show that if
Giapetto’s objective function were z � 6x1 � x2, point F would be optimal, whereas if
Giapetto’s objective function were z � x1 � 6x2, point D would be optimal.)

Our proof that an LP always has an optimal extreme point depended heavily on the fact
that both the objective function and the constraints were linear functions. In Chapter 11,
we show that for an optimization problem in which the objective function or some of the
constraints are not linear, the optimal solution to the optimization problem may not occur
at an extreme point.

The Graphical Solution of Minimization Problems

Dorian Auto manufactures luxury cars and trucks. The company believes that its most
likely customers are high-income women and men. To reach these groups, Dorian Auto
has embarked on an ambitious TV advertising campaign and has decided to purchase 
1-minute commercial spots on two types of programs: comedy shows and football games.
Each comedy commercial is seen by 7 million high-income women and 2 million high-
income men. Each football commercial is seen by 2 million high-income women and 12
million high-income men. A 1-minute comedy ad costs $50,000, and a 1-minute football
ad costs $100,000. Dorian would like the commercials to be seen by at least 28 million
high-income women and 24 million high-income men. Use linear programming to deter-
mine how Dorian Auto can meet its advertising requirements at minimum cost.

Solution Dorian must decide how many comedy and football ads should be purchased, so the de-
cision variables are

x1 � number of 1-minute comedy ads purchased

x2 � number of 1-minute football ads purchased

Then Dorian wants to minimize total advertising cost (in thousands of dollars).

Total advertising cost � cost of comedy ads � cost of football ads

� ��com
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Thus, Dorian’s objective function is

min z � 50x1 � 100x2 (9)

Dorian faces the following constraints:

Constraint 1 Commercials must reach at least 28 million high-income women.

Constraint 2 Commercials must reach at least 24 million high-income men.

To express Constraints 1 and 2 in terms of x1 and x2, let HIW stand for high-income
women viewers and HIM stand for high-income men viewers (in millions).

HIW � ��com
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� 2x1 � 12x2

Constraint 1 may now be expressed as

7x1 � 2x2 � 28 (10)

and Constraint 2 may be expressed as

2x1 � 12x2 � 24 (11)

The sign restrictions x1 � 0 and x2 � 0 are necessary, so the Dorian LP is given by:

min z � 50x1 � 100x2

s.t. 7x1 � 2x2 � 28 (HIW)

s.t. 2x1 � 12x2 � 24 (HIM)

x1, x2 � 0

This problem is typical of a wide range of LP applications in which a decision maker
wants to minimize the cost of meeting a certain set of requirements. To solve this LP
graphically, we begin by graphing the feasible region (Figure 4). Note that (10) is satis-
fied by points on or above the line AB (AB is part of the line 7x1 � 2x2 � 28) and that
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(11) is satisfied by the points on or above the line CD (CD is part of the line 2x1 �
12x2 � 24). From Figure 4, we see that the only first-quadrant points satisfying both 
(10) and (11) are the points in the shaded region bounded by the x1 axis, CEB, and the x2 axis.

Like the Giapetto problem, the Dorian problem has a convex feasible region, but the
feasible region for Dorian, unlike Giapetto’s, contains points for which the value of at least
one variable can assume arbitrarily large values. Such a feasible region is called an un-
bounded feasible region.

Because Dorian wants to minimize total advertising cost, the optimal solution to the
problem is the point in the feasible region with the smallest z-value. To find the optimal
solution, we need to draw an isocost line that intersects the feasible region. An isocost
line is any line on which all points have the same z-value (or same cost). We arbitrarily
choose the isocost line passing through the point (x1 � 4, x2 � 4). For this point, z �
50(4) � 100(4) � 600, and we graph the isocost line z � 50x1 � 100x2 � 600.

We consider lines parallel to the isocost line 50x1 � 100x2 � 600 in the direction of
decreasing z (southwest). The last point in the feasible region that intersects an isocost
line will be the point in the feasible region having the smallest z-value. From Figure 4,
we see that point E has the smallest z-value of any point in the feasible region; this is the
optimal solution to the Dorian problem. Note that point E is where the lines 7x1 � 2x2 �
28 and 2x1 � 12x2 � 24 intersect. Simultaneously solving these equations yields the op-
timal solution (x1 � 3.6, x2 � 1.4). The optimal z-value can then be found by substitut-
ing these values of x1 and x2 into the objective function. Thus, the optimal z-value is z �
50(3.6) � 100(1.4) � 320 � $320,000. Because at point E both the HIW and HIM con-
straints are satisfied with equality, both constraints are binding.

Does the Dorian model meet the four assumptions of linear programming outlined in
Section 3.1?

For the Proportionality Assumption to be valid, each extra comedy commercial must
add exactly 7 million HIW and 2 million HIM. This contradicts empirical evidence, which
indicates that after a certain point advertising yields diminishing returns. After, say, 500
auto commercials have been aired, most people have probably seen one, so it does little
good to air more commercials. Thus, the Proportionality Assumption is violated.

We used the Additivity Assumption to justify writing (total HIW viewers) � (HIW
viewers from comedy ads) � (HIW viewers from football ads). In reality, many of the
same people will see a Dorian comedy commercial and a Dorian football commercial. We
are double-counting such people, and this creates an inaccurate picture of the total num-
ber of people seeing Dorian commercials. The fact that the same person may see more
than one type of commercial means that the effectiveness of, say, a comedy commercial
depends on the number of football commercials. This violates the Additivity Assumption.

If only 1-minute commercials are available, then it is unreasonable to say that Dorian
should buy 3.6 comedy commercials and 1.4 football commercials, so the Divisibility As-
sumption is violated, and the Dorian problem should be considered an integer program-
ming problem. In Section 9.3, we show that if the Dorian problem is solved as an integer
programming problem, then the minimum cost is attained by choosing (x1 � 6, x2 � 1)
or (x1 � 4, x2 � 2). For either solution, the minimum cost is $400,000. This is 25% higher
than the cost obtained from the optimal LP solution.

Because there is no way to know with certainty how many viewers are added by each type
of commercial, the Certainty Assumption is also violated. Thus, all the assumptions of lin-
ear programming seem to be violated by the Dorian Auto problem. Despite these drawbacks,
analysts have used similar models to help companies determine their optimal media mix.†
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1 Graphically solve Problem 1 of Section 3.1.

2 Graphically solve Problem 4 of Section 3.1.

3 Leary Chemical manufactures three chemicals: A, B,
and C. These chemicals are produced via two production
processes: 1 and 2. Running process 1 for an hour costs $4
and yields 3 units of A, 1 of B, and 1 of C. Running process
2 for an hour costs $1 and produces 1 unit of A and 1 of B.
To meet customer demands, at least 10 units of A, 5 of B,
and 3 of C must be produced daily. Graphically determine
a daily production plan that minimizes the cost of meeting
Leary Chemical’s daily demands.

4 For each of the following, determine the direction in
which the objective function increases:

a z � 4x1 � x2

b z � �x1 � 2x2

c z � �x1 � 3x2

5 Furnco manufactures desks and chairs. Each desk uses
4 units of wood, and each chair uses 3. A desk contributes

$40 to profit, and a chair contributes $25. Marketing
restrictions require that the number of chairs produced be at
least twice the number of desks produced. If 20 units of
wood are available, formulate an LP to maximize Furnco’s
profit. Then graphically solve the LP.

6 Farmer Jane owns 45 acres of land. She is going to plant
each with wheat or corn. Each acre planted with wheat
yields $200 profit; each with corn yields $300 profit. The
labor and fertilizer used for each acre are given in Table 1.
One hundred workers and 120 tons of fertilizer are available.
Use linear programming to determine how Jane can
maximize profits from her land.

3.3 Special Cases
The Giapetto and Dorian problems each had a unique optimal solution. In this section,
we encounter three types of LPs that do not have unique optimal solutions.

1 Some LPs have an infinite number of optimal solutions (alternative or multiple opti-
mal solutions).

2 Some LPs have no feasible solutions (infeasible LPs).

3 Some LPs are unbounded: There are points in the feasible region with arbitrarily large
(in a max problem) z-values.

Alternative or Multiple Optimal Solutions

An auto company manufactures cars and trucks. Each vehicle must be processed in the
paint shop and body assembly shop. If the paint shop were only painting trucks, then 40
per day could be painted. If the paint shop were only painting cars, then 60 per day could
be painted. If the body shop were only producing cars, then it could process 50 per day.
If the body shop were only producing trucks, then it could process 50 per day. Each truck
contributes $300 to profit, and each car contributes $200 to profit. Use linear program-
ming to determine a daily production schedule that will maximize the company’s profits.

Solution The company must decide how many cars and trucks should be produced daily. This leads
us to define the following decision variables:

x1 � number of trucks produced daily

x2 � number of cars produced daily

TA B L E  1

Wheat Corn

Labor 3 workers 2 workers
Fertilizer 2 tons 4 tons

Alternative Optimal SolutionsE X A M P L E  3



The company’s daily profit (in hundreds of dollars) is 3x1 � 2x2, so the company’s ob-
jective function may be written as

max z � 3x1 � 2x2 (12)

The company’s two constraints are the following:

Constraint 1 The fraction of the day during which the paint shop is busy is less than or
equal to 1.

Constraint 2 The fraction of the day during which the body shop is busy is less than or
equal to 1.

We have

Fraction of day paint shop works on trucks � ��fracti
t
o
ru
n
c
o
k
f day

�� ��trd
u
a
c
y
ks

��
� �

4
1
0
� x1

Fraction of day paint shop works on cars � �
6
1
0
� x2

Fraction of day body shop works on trucks � �
5
1
0
� x1

Fraction of day body shop works on cars � �
5
1
0
� x2

Thus, Constraint 1 may be expressed by

�
4
1
0
� x1 � �

6
1
0
� x2 � 1 (Paint shop constraint) (13)

and Constraint 2 may be expressed by

�
5
1
0
� x1 � �

5
1
0
� x2 � 1 (Body shop constraint) (14)

Because x1 � 0 and x2 � 0 must hold, the relevant LP is

max z � 3x1 � 2x2 (12)

s.t. �
4
1
0
� x1 � �

6
1
0
� x2 � 1 (13)

�
5
1
0
� x1 � �

5
1
0
� x2 � 1 (14)

x1, x2 � 0

The feasible region for this LP is the shaded region in Figure 5 bounded by AEDF.†

For our isoprofit line, we choose the line passing through the point (20, 0). Because
(20, 0) has a z-value of 3(20) � 2(0) � 60, this yields the isoprofit line z � 3x1 �
2x2 � 60. Examining lines parallel to this isoprofit line in the direction of increasing z
(northeast), we find that the last “point” in the feasible region to intersect an isoprofit line
is the entire line segment AE. This means that any point on the line segment AE is opti-
mal. We can use any point on AE to determine the optimal z-value. For example, point A,
(40, 0), gives z � 3(40) � 120.

In summary, the auto company’s LP has an infinite number of optimal solutions, or
multiple or alternative optimal solutions. This is indicated by the fact that as an isoprofit
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†Constraint (13) is satisfied by all points on or below AB (AB is �
4
1
0
� x1 � �

6
1
0
� x2 � 1), and (14) is satisfied by

all points on or below CD (CD is �
5
1
0
� x1 � �

5
1
0
� x2 � 1).



line leaves the feasible region, it will intersect an entire line segment corresponding to the
binding constraint (in this case, AE).

From our current example, it seems reasonable (and can be shown to be true) that if
two points (A and E here) are optimal, then any point on the line segment joining these
two points will also be optimal.

If an alternative optimum occurs, then the decision maker can use a secondary crite-
rion to choose between optimal solutions. The auto company’s managers might prefer
point A because it would simplify their business (and still allow them to maximize prof-
its) by allowing them to produce only one type of product (trucks).

The technique of goal programming (see Section 4.14) is often used to choose among
alternative optimal solutions.

Infeasible LP

It is possible for an LP’s feasible region to be empty (contain no points), resulting in an
infeasible LP. Because the optimal solution to an LP is the best point in the feasible re-
gion, an infeasible LP has no optimal solution.

Suppose that auto dealers require that the auto company in Example 3 produce at least 30
trucks and 20 cars. Find the optimal solution to the new LP.

Solution After adding the constraints x1 � 30 and x2 � 20 to the LP of Example 3, we obtain the
following LP:

max z � 3x1 � 2x2

s.t. �
4
1
0
� x1 � �

6
1
0
� x2 � 1 (15)

�
5
1
0
� x1 � �

5
1
0
� x2 � 1 (16)
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x1  � 50 x2 � 30 (17)

x2 � 20 (18)

x1, x2 � 0

The graph of the feasible region for this LP is Figure 6.

Constraint (15) is satisfied by all points on or below AB (AB is �
4
1
0
�x1 � �

6
1
0
�x2 � 1).

Constraint (16) is satisfied by all points on or below CD (CD is �
5
1
0
�x1 � �

5
1
0
�x2 � 1).

Constraint (17) is satisfied by all points on or to the right of EF (EF is x1 � 30).

Constraint (18) is satisfied by all points on or above GH (GH is x2 � 20).

From Figure 6 it is clear that no point satisfies all of (15)–(18). This means that Example
4 has an empty feasible region and is an infeasible LP.

In Example 4, the LP is infeasible because producing 30 trucks and 20 cars requires
more paint shop time than is available.

Unbounded LP

Our next special LP is an unbounded LP. For a max problem, an unbounded LP occurs if
it is possible to find points in the feasible region with arbitrarily large z-values, which cor-
responds to a decision maker earning arbitrarily large revenues or profits. This would in-
dicate that an unbounded optimal solution should not occur in a correctly formulated LP.
Thus, if the reader ever solves an LP on the computer and finds that the LP is unbounded,
then an error has probably been made in formulating the LP or in inputting the LP into
the computer.

For a minimization problem, an LP is unbounded if there are points in the feasible re-
gion with arbitrarily small z-values. When graphically solving an LP, we can spot an un-
bounded LP as follows: A max problem is unbounded if, when we move parallel to our
original isoprofit line in the direction of increasing z, we never entirely leave the feasible
region. A minimization problem is unbounded if we never leave the feasible region when
moving in the direction of decreasing z.
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Graphically solve the following LP:

max z � 2x1 � x2

s.t. x1 � x2 � 1 (19)

2x1 � x2 � 6 (20)

x1, x2 � 0

Solution From Figure 7, we see that (19) is satisfied by all points on or above AB (AB is the line
x1 � x2 � 1). Also, (20) is satisfied by all points on or above CD (CD is 2x1 � x2 � 6).
Thus, the feasible region for Example 5 is the (shaded) unbounded region in Figure 7,
which is bounded only by the x2 axis, line segment DE, and the part of line AB beginning
at E. To find the optimal solution, we draw the isoprofit line passing through (2, 0). This
isoprofit line has z � 2x1 � x2 � 2(2) � 0 � 4. The direction of increasing z is to the
southeast (this makes x1 larger and x2 smaller). Moving parallel to z � 2x1 � x2 in a
southeast direction, we see that any isoprofit line we draw will intersect the feasible re-
gion. (This is because any isoprofit line is steeper than the line x1 � x2 � 1.)

Thus, there are points in the feasible region that have arbitrarily large z-values. For ex-
ample, if we wanted to find a point in the feasible region that had z � 1,000,000, we could
choose any point in the feasible region that is southeast of the isoprofit line z � 1,000,000.

From the discussion in the last two sections, we see that every LP with two variables
must fall into one of the following four cases:

Case 1 The LP has a unique optimal solution.

Case 2 The LP has alternative or multiple optimal solutions: Two or more extreme points
are optimal, and the LP will have an infinite number of optimal solutions.

Case 3 The LP is infeasible: The feasible region contains no points.

Case 4 The LP is unbounded: There are points in the feasible region with arbitrarily large
z-values (max problem) or arbitrarily small z-values (min problem).

In Chapter 4, we show that every LP (not just LPs with two variables) must fall into one
of Cases 1–4.
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The Simplex Algorithm 
and Goal Programming

In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Un-
fortunately, most real-life LPs have many variables, so a method is needed to solve LPs with
more than two variables. We devote most of this chapter to a discussion of the simplex algo-
rithm, which is used to solve even very large LPs. In many industrial applications, the simplex
algorithm is used to solve LPs with thousands of constraints and variables.

In this chapter, we explain how the simplex algorithm can be used to find optimal solutions
to LPs. We also detail how two state-of-the-art computer packages (LINDO and LINGO) can
be used to solve LPs. Briefly, we also discuss Karmarkar’s pioneering approach for solving
LPs. We close the chapter with an introduction to goal programming, which enables the de-
cision maker to consider more than one objective function.

4.1 How to Convert an LP to Standard Form
We have seen that an LP can have both equality and inequality constraints. It also can
have variables that are required to be nonnegative as well as those allowed to be un-
restricted in sign (urs). Before the simplex algorithm can be used to solve an LP, the
LP must be converted into an equivalent problem in which all constraints are equa-
tions and all variables are nonnegative. An LP in this form is said to be in standard
form.†

To convert an LP into standard form, each inequality constraint must be replaced by
an equality constraint. We illustrate this procedure using the following problem.

Leather Limited manufactures two types of belts: the deluxe model and the regular model.
Each type requires 1 sq yd of leather. A regular belt requires 1 hour of skilled labor, and
a deluxe belt requires 2 hours. Each week, 40 sq yd of leather and 60 hours of skilled la-
bor are available. Each regular belt contributes $3 to profit and each deluxe belt, $4. If
we define

x1 � number of deluxe belts produced weekly

x2 � number of regular belts produced weekly

Leather LimitedE X A M P L E  1

†Throughout the first part of the chapter we assume that all variables must be nonnegative (�0). The conver-
sion of urs variables to nonnegative variables is discussed in Section 4.12.



the appropriate LP is

max z � 4x1 � 3x2 (LP 1)

s.t. x1 � x2 � 40 (Leather constraint) (1)

s.t. 2x1 � x2 � 60 (Labor constraint) (2)

x1, x2 � 0

How can we convert (1) and (2) to equality constraints? We define for each � constraint
a slack variable si(si � slack variable for ith constraint), which is the amount of the re-
source unused in the ith constraint. Because x1 � x2 sq yd of leather are being used, and
40 sq yd are available, we define s1 by

s1 � 40 � x1 � x2 or x1 � x2 � s1 � 40

Similarly, we define s2 by

s2 � 60 � 2x1 � x2 or 2x1 � x2 � s2 � 60

Observe that a point (x1, x2) satisfies the ith constraint if and only if si � 0. For example,
x1 � 15, x2 � 20 satisfies (1) because s1 � 40 � 15 � 20 � 5 � 0.

Intuitively, (1) is satisfied by the point (15, 20), because s1 � 5 sq yd of leather are
unused. Similarly, (15, 20) satisfies (2), because s2 � 60 � 2(15) � 20 � 10 labor hours
are unused. Finally, note that the point x1 � x2 � 25 fails to satisfy (2), because s2 �
60 � 2(25) � 25 � �15 indicates that (25, 25) uses more labor than is available.

In summary, to convert (1) to an equality constraint, we replace (1) by s1 � 40 �
x1 � x2 (or x1 � x2 � s1 � 40) and s1 � 0. To convert (2) to an equality constraint, we
replace (2) by s2 � 60 � 2x1 � x2 (or 2x1 � x2 � s2 � 60) and s2 � 0. This converts
LP 1 to

max z � 4x1 � 3x2

s.t. x1 � x2 � s1 � s2 � 40
(LP 1�)

s.t. 2x1 � x2 � s1 � s2 � 60

x1, x2, s1, s2 � 0

Note that LP 1� is in standard form. In summary, if constraint i of an LP is a � constraint,
then we convert it to an equality constraint by adding a slack variable si to the ith con-
straint and adding the sign restriction si � 0.

To illustrate how a � constraint can be converted to an equality constraint, let’s con-
sider the diet problem of Section 3.4.

min z � 50x1 � 20x2 � 30x3 � 80x4

s.t. 400x1 � 200x2 � 150x3 � 500x4 � 500 (Calorie constraint) (3)

s.t. 3x1 � 2x2 � 6 (Chocolate constraint) (4)

s.t. 2x1 � 2x2 � 4x3 � 4x4 � 10 (Sugar constraint) (5)

s.t. 2x1 � 4x2 � x3 � 5x4 � 8 (Fat constraint) (6)

x1, x2, x3, x4 � 0

To convert the ith � constraint to an equality constraint, we define an excess variable
(sometimes called a surplus variable) ei. (ei will always be the excess variable for the ith
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constraint.) We define ei to be the amount by which the ith constraint is oversatisfied.
Thus, for the diet problem,

e1 � 400x1 � 200x2 � 150x3 � 500x4 � 500, or (3�)

400x1 � 200x2 � 150x3 � 500x4 � e1 � 500

e2 � 3x1 � 2x2 � 6, or 3x1 � 2x2 � e2 � 6 (4�)

e3 � 2x1 � 2x2 � 4x3 � 4x4 � 10, or 2x1 � 2x2 � 4x3 � 4x4 � e3 � 10 (5�)

e4 � 2x1 � 4x2 � x3 � 5x4 � 8, or 2x1 � 4x2 � x3 � 5x4 � e4 � 8 (6�)

A point (x1, x2, x3, x4) satisfies the ith � constraint if and only if ei is nonnegative. For
example, from (4�), e2 � 0 if and only if 3x1 � 2x2 � 6. For a numerical example, con-
sider the point x1 � 2, x3 � 4, x2 � x4 � 0, which satisfies all four of the diet problem’s
constraints. For this point,

e1 � 400(2) � 150(4) � 500 � 900 � 0

e2 � 3(2) � 6 � 0 � 0

e3 � 2(2) � 4(4) � 10 � 10 � 0

e4 � 2(2) � 4 � 8 � 0 � 0

As another example, consider x1 � x2 � 1, x3 � x4 � 0. This point is infeasible; it vio-
lates the chocolate, sugar, and fat constraints. The infeasibility of this point is indicated by

e2 � 3(1) � 2(1) � 6 � �1 � 0

e3 � 2(1) � 2(1) � 10 � �6 � 0

e4 � 2(1) � 4(1) � 8 � �2 � 0

Thus, to transform the diet problem into standard form, replace (3) by (3�); (4) by (4�);
(5) by (5�); and (6) by (6�). We must also add the sign restrictions ei � 0 (i � 1, 2, 3, 4).
The resulting LP is in standard form and may be written as

min z � 50x1 � 20x2 � 30x3 � 80x4

s.t. 400x1 � 200x2 � 150x3 � 500x4 � e1 � e1 � e1 � e1 � 500

s.t. 3x1 � 2x2 � 150x3 � 500x4 � e1 � e2 � e2 � e2 � 6

s.t. 2x1 � 2x2 � 4x3 � 4x4 � e1 � e2 � e3 � e2 � 10

s.t. 2x1 � 4x2 � x3 � 5x4 � e1 � e2 � e3 � e4 � 8

xi, ei � 0 (i � 1, 2, 3, 4)

In summary, if the ith constraint of an LP is a � constraint, then it can be converted
to an equality constraint by subtracting an excess variable ei from the ith constraint and
adding the sign restriction ei � 0.

If an LP has both � and � constraints, then simply apply the procedures we have de-
scribed to the individual constraints. As an example, let’s convert the short-term financial
planning model of Section 3.7 to standard form. Recall that the original LP was

max z � 20x1 � 15x2

s.t. x1 � 35x2 � 100

s.t. x1 � 35x2 � 100

s.t. 50x1 � 35x2 � 6,000

s.t. 20x1 � 15x2 � 2,000

x1, x2 � 0
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Following the procedures described previously, we transform this LP into standard form
by adding slack variables s1, s2, and s3, respectively, to the first three constraints and sub-
tracting an excess variable e4 from the fourth constraint. Then we add the sign restrictions
s1 � 0, s2 � 0, s3 � 0, and e4 � 0. This yields the following LP in standard form:

max z � 20x1 � 15x2

s.t. x1 � 15x2 � s1 � s1 � s1 � e4 � 100

s.t. 50x1 � 15x2 � s1 � s2 � s1 � e4 � 100

s.t. 50x1 � 35x2 � s1 � s1 � s3 � e4 � 6,000

s.t. 20x1 � 15x2 � s1 � s1 � s1 � e4 � 2,000

xi � 0 (i � 1, 2); si � 0 (i � 1, 2, 3); e4 � 0

Of course, we could easily have labeled the excess variable for the fourth constraint e1

(because it is the first excess variable). We chose to call it e4 rather than e1 to indicate that
e4 is the excess variable for the fourth constraint.

P R O B L E M S
Group A
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1 Convert the Giapetto problem (Example 1 in Chapter 3)
to standard form.

2 Convert the Dorian problem (Example 2 in Chapter 3)
to standard form.

3 Convert the following LP to standard form:
min z � 3x1 � x2

s.t. x1 � x2 � 3
s.t. x1 � x2 � 4
s.t. 2x1 � x2 � 3

x1, x2 � 0

4.2 Preview of the Simplex Algorithm
Suppose we have converted an LP with m constraints into standard form. Assuming that
the standard form contains n variables (labeled for convenience x1, x2, . . . , xn), the stan-
dard form for such an LP is

max z � c1x1 � c2x2 � 			 � cnxn

(or min)

s.t. a11x1 � a12x2 � 			 � a1nxn � b1

s.t. a21x1 � a22x2 � 			 � a2nxn � b2 (7)

	 	 		 	 		 	 	
s.t. am1x1 � am2x2� 			 � amnxn � bm

xi � 0 (i � 1, 2, . . . , n)

If we define

A � � �
a1n

a2n

			
amn

			

			

			

a12

a22

			
am2

a11

a12

			
a1n



and

x � � �, b � � �
the constraints for (7) may be written as the system of equations Ax � b. Before pro-
ceeding further with our discussion of the simplex algorithm, we must define the concept
of a basic solution to a linear system.

Basic and Nonbasic Variables

Consider a system Ax � b of m linear equations in n variables (assume n � m).

D E F I N I T I O N ■ A basic solution to Ax � b is obtained by setting n � m variables equal to 0 and
solving for the values of the remaining m variables. This assumes that setting the 
n � m variables equal to 0 yields unique values for the remaining m variables or,
equivalently, the columns for the remaining m variables are linearly independent. ■

To find a basic solution to Ax � b, we choose a set of n � m variables (the nonbasic
variables, or NBV) and set each of these variables equal to 0. Then we solve for the val-
ues of the remaining n � (n � m) � m variables (the basic variables, or BV) that sat-
isfy Ax � b.

Of course, the different choices of nonbasic variables will lead to different basic solu-
tions. To illustrate, we find all the basic solutions to the following system of two equa-
tions in three variables:

x1 � x2 � x3 � 3
(8)

x1 � x2 � x3 � �1

We begin by choosing a set of 3 � 2 � 1 (3 variables, 2 equations) nonbasic variables.
For example, if NBV � {x3}, then BV � {x1, x2}. We obtain the values of the basic vari-
ables by setting x3 � 0 and solving

x1 � x2 � 3

x1 �x2 � �1

We find that x1 � 2, x2 � 1. Thus, x1 � 2, x2 � 1, x3 � 0 is a basic solution to (8). How-
ever, if we choose NBV � {x1} and BV � {x2, x3}, we obtain the basic solution x1 � 0,
x2 � 3, x3 � 2. If we choose NBV � {x2}, we obtain the basic solution x1 � 3, x2 � 0,
x3 � �1. The reader should verify these results.

Some sets of m variables do not yield a basic solution. For example, consider the fol-
lowing linear system:

x1 � 2x2 � x3 � 1

2x1 � 4x2 � x3 � 3

If we choose NBV � {x3} and BV � {x1, x2}, the corresponding basic solution would
be obtained by solving

x1 � 2x2 � 1

2x1 � 4x2 � 3

b1

b2

			

bm

x1

x2

			

xn
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Because this system has no solution, there is no basic solution corresponding to BV �
{x1, x2}.

Feasible Solutions

A certain subset of the basic solutions to the constraints Ax � b of an LP plays an im-
portant role in the theory of linear programming.

D E F I N I T I O N ■ Any basic solution to (7) in which all variables are nonnegative is a basic feasible
solution (or bfs). ■

Thus, for an LP with the constraints given by (8), the basic solutions x1 � 2, x2 � 1,
x3 � 0, and x1 � 0, x2 � 3, x3 � 2 are basic feasible solutions, but the basic solution 
x1 � 3, x2 � 0, x3 � �1 fails to be a basic solution (because x3 � 0).

In the rest of this section, we assume that all LPs are in standard form. Recall from
Section 3.2 that the feasible region for any LP is a convex set. Let S be the feasible re-
gion for an LP in standard form. Recall that a point P is an extreme point of S if all line
segments that contain P and are completely contained in S have P as an endpoint. It turns
out that the extreme points of an LP’s feasible region and the LP’s basic feasible solutions
are actually one and the same. More formally,

A point in the feasible region of an LP is an extreme point if and only if it is a ba-
sic feasible solution to the LP.

See Luenburger (1984) for a proof of Theorem 1.

To illustrate the correspondence between extreme points and basic feasible solutions
outlined in Theorem 1, let’s look at the Leather Limited example of Section 4.1. Recall
that the LP was

max z � 4x1 � 3x2

s.t. x1 � x2 � 40 (LP 1)

s.t. 2x1 � x2 � 60 (1)

x1, x2 � 0 (2)

By adding slack variables s1 and s2, respectively, to (1) and (2), we obtain LP 1 in stan-
dard form:

max z � 4x1 � 3x2

s.t. x1 � x2 � s1 � s2 � 40
(LP 1�)

s.t. 2x1 � x2 � s1 � s2 � 60

x1, x2, s1, s2 � 0

The feasible region for the Leather Limited problem is graphed in Figure 1. Both in-
equalities are satisfied: (1) by all points below or on the line AB(x1 � x2 � 40), and 
(2) by all points on or below the line CD(2x1 � x2 � 60). Thus, the feasible region for
LP 1 is the shaded region bounded by the quadrilateral BECF. The extreme points of the
feasible region are B � (0, 40), C � (30, 0), E � (20, 20), and F � (0, 0).
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Table 1 shows the correspondence between the basic feasible solutions to LP 1� and
the extreme points of the feasible region for LP 1. This example should make it clear that
the basic feasible solutions to the standard form of an LP correspond in a natural fashion
to the LP’s extreme points.

In the context of the Leather Limited example, it is easy to show why any bfs is an ex-
treme point. The converse is harder! We now show that for the LL problem, any bfs is 
an extreme point. Any point in the feasible region for LL may be specified as a four-
dimensional column vector with the four elements of the vector denoting x1, x2, s1, and
s2, respectively. Consider the bfs B with BV � {x2, s2}. If B is not an extreme point, then
there exists two distinct feasible points v1 and v2 and non-negative numbers 
1 and 
2 sat-
isfying 0 � 
i � 1 and 
1 � 
2 � 1 such that

� � � 
1v1 � 
2v2

Clearly, both v1 and v2 must both have x1 � s2 � 0. But because v1 and v2 are both
feasible, the values of x2 and s2 for both v1 and v2 can be determined by solving x2 � 40
and x2 � s2 � 60. These equations have a unique solution (because columns corre-
sponding to basic variables x2 and s2 are linearly independent). This shows that v1 � v2,
so B is indeed an extreme point.
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40
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TA B L E  1
Correspondence between Basic Feasible Solutions and Corner Points for Leather Limited

Basic Nonbasic Basic Corresponds to
Variables Variables Feasible Solution Corner Point

x1, x2 s1, s2 s1 � s2 � 0, x1 � x2 � 20 E
x1, s1 x2, s2 x2 � s2 � 0, x1 � 30, s1 � 10 C
x1, s2 x2, s1 x2 � s1 � 0, x1 � 40, s2 � �20 Not a bfs because s2 � 0
x2, s1 x1, s2 x1 � s2 � 0, s1 � �20, x2 � 60 Not a bfs because s1 � 0
x2, s2 x1, s1 x1 � s1 � 0, x2 � 40, s2 � 20 B
s1, s2 x1, x2 x1 � x2 � 0, s1 � 40, s2 � 60 F



We note that more than one set of basic variables may correspond to a given extreme
point. If this is the case, then we say the LP is degenerate. See Section 4.11 for a dis-
cussion of the impact of degeneracy on the simplex algorithm.

We will soon see that if an LP has an optimal solution, then it has a bfs that is 
optimal. This is important because any LP has only a finite number of bfs’s. Thus we
can find the optimal solution to an LP by searching only a finite number of points.
Because the feasible region for any LP contains an infinite number of points, this
helps us a lot!

Before explaining why any LP that has an optimal solution has an optimal bfs, we need
to define the concept of a direction of unboundedness.

4.3 Direction of Unboundedness
Consider an LP in standard form with feasible region S and constraints Ax � b and x �
0. Assuming that our LP has n variables, 0 represents an n-dimensional column vector
consisting of all 0’s. A nonzero vector d is a direction of unboundedness if for all x�S
and any c � 0, x � cd�S. In short, if we are in the LP’s feasible region, then we can
move as far as we want in the direction d and remain in the feasible region. Figure 2 dis-
plays the feasible region for the Dorian Auto example (Example 2 of Chapter 3). In stan-
dard form, the Dorian example is

min z � 50x1 � 100x2

7x1 � 2x2 � e1 � 28

2x1 � 12x2 � e2 � 24

x1, x2, e1, e2 � 0

Looking at Figure 2 it is clear that if we start at any feasible point and move up 
and to the right at a 45-degree angle, we will remain in the feasible region. This means
that
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d � � �
is a direction of unboundedness for this LP. It is easy to show (see Problem 6) that d is a
direction of unboundedness if and only if Ad � 0 and d � 0.

The following Representation Theorem [for a proof, see Nash and Sofer (1996)] is the
key insight needed to show why any LP with an optimal solution has an optimal bfs.

Consider an LP in standard form, having bfs b1, b2, . . . , bk. Any point x in the LP’s
feasible region may be written in the form

x � d � �i�k
i�1 
ibi

where d is 0 or a direction of unboundedness and �i�k
i�1 
i � 1 and 
i � 0.

If the LP’s feasible region is bounded, then d � 0, and we may write x � �i�k
i�1 
ibi,

where the 
i are nonnegative weights adding to 1. In this case, we see that any feasible 
x may be written as a convex combination of the LP’s bfs. We now give two illustrations
of Theorem 2.

Consider the Leather Limited example. The feasible region is bounded. To illustrate
Theorem 2, we can write the point G � (20, 10) (G is not a bfs!) in Figure 3 as a convex
combination of the LP’s bfs. Note from Figure 3 that point G may be written as 
�
1
6

�F � �
5
6

�H [here H � (24, 12)]. Then note that point H may be written as .6E � .4C. Putting
these two relationships together, we may write point G as �

1
6

�F � �
5
6

�(.6E � .4C) � �
1
6

�F �
�
1
2

�E � �
1
3

�C. This expresses point G as a convex combination of the LP’s extreme points.
To illustrate Theorem 2 for an unbounded LP, let’s consider Example 2 of Chapter 3

(the Dorian example; see Figure 4) and try to express the point F � (14, 4) in the repre-
sentation given in Theorem 2. Recall that in standard form the constraints for the Dorian
example are given by

7x1 � 2x2 � e1 � 28

1

1

9

14
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2x1 � 12x2 � e2 � 24

From Figure 4, we see that to move from bfs C to point F we need to move up and to
the right along a line having slope �1

4
4

�
�

0
12

� � 2. This line corresponds to the direction of
unboundedness

d � � �
Letting

b1 � � � and x � � �
we may write x � d � b1, which is the desired representation.

4.4 Why Does an LP Have an Optimal bfs?
Consider an LP with objective function max cx and constraints Ax � b. Suppose this LP

has an optimal solution. We now sketch a proof of the fact that the LP has an optimal bfs.

If an LP has an optimal solution, then it has an optimal bfs.

Proof Let x be an optimal solution to our LP. Because x is feasible, Theorem 2 tells
us that we may write x � d � �i�k

i�1 
ibi, where d is 0 or a direction of unbound-
edness and b1, b2, . . . , bk are the LP’s bfs. Also, �i�k

i�1 
i � 1 and 
i � 0. If cd 
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0, then for any k  0, kd � �i�k
i�1 
ibi is feasible, and as k grows larger and larger,

the objective function value approaches infinity. This contradicts the fact that the LP
has an optimal solution. If cd � 0, then the feasible point �i�k

i�1 
ibi has a larger ob-
jective function value than x. This contradicts the optimality of x. In short, we have
shown that if x is optimal, then cd � 0. Now the objective function value for x is
given by

cx � cd � �i�k
i�1 
icbi � �i�k

i�1 
icbi

Suppose that b1 is the bfs with the largest objective function value. Because �i�k
i�1


i � 1 and 
i � 0,

cb1 � cx

Because x is optimal, this shows that b1 is also optimal, and the LP does indeed
have an optimal bfs.

Adjacent Basic Feasible Solutions

Before describing the simplex algorithm in general terms, we need to define the concept
of an adjacent basic feasible solution.

D E F I N I T I O N ■ For any LP with m constraints, two basic feasible solutions are said to be adjacent
if their sets of basic variables have m � 1 basic variables in common. ■

For example, in Figure 3, two basic feasible solutions will be adjacent if they have 
2 � 1 � 1 basic variable in common. Thus, the bfs corresponding to point E in Figure 3
is adjacent to the bfs corresponding to point C. Point E is not, however, adjacent to bfs F.
Intuitively, two basic feasible solutions are adjacent if they both lie on the same edge of
the boundary of the feasible region.

We now give a general description of how the simplex algorithm solves LPs in a max
problem.

Step 1 Find a bfs to the LP. We call this bfs the initial basic feasible solution. In general,
the most recent bfs will be called the current bfs, so at the beginning of the problem the
initial bfs is the current bfs.

Step 2 Determine if the current bfs is an optimal solution to the LP. If it is not, then find
an adjacent bfs that has a larger z-value.

Step 3 Return to step 2, using the new bfs as the current bfs.

If an LP in standard form has m constraints and n variables, then there may be a ba-
sic solution for each choice of nonbasic variables. From n variables, a set of n � m non-
basic variables (or equivalently, m basic variables) can be chosen in

� � �

different ways. Thus, an LP can have at most

� �
basic solutions. Because some basic solutions may not be feasible, an LP can have at most

n
m

n!
��

n
m
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� �
basic feasible solutions. If we were to proceed from the current bfs to a better bfs (with-
out ever repeating a bfs), then we would surely find the optimal bfs after examining at most

� �
basic feasible solutions. This means (assuming that no bfs is repeated) that the simplex
algorithm will find the optimal bfs after a finite number of calculations. We return to this
discussion in Section 4.11.

In principle, we could enumerate all basic feasible solutions to an LP and find the bfs
with the largest z-value. The problem with this approach is that even small LPs have a very
large number of basic feasible solutions. For example, an LP in standard form that has 20
variables and 10 constraints might have (if each basic solution were feasible) up to

� � � 184,756

basic feasible solutions. Fortunately, vast experience with the simplex algorithm indicates
that when this algorithm is applied to an n-variable, m-constraint LP in standard form, an
optimal solution is usually found after examining fewer than 3m basic feasible solutions.
Thus, for a 20-variable, 10-constraint LP in standard form, the simplex will usually find the
optimal solution after examining fewer than 3(10) � 30 basic feasible solutions. Compared
with the alternative of examining 184,756 basic solutions, the simplex is quite efficient!†

Geometry of Three-Dimensional LPs

Consider the following LP:

max z � 2x1 � 2x2 � 2x3 � 8

s.t. 2x1 � x2 � 2x3 � 8

x3 � 10

x1, x2, x3 � 0

The set of points satisfying a linear inequality in three (or any number of) dimensions
is a half-space. For example, the set of points in three dimensions satisfying 2x1 � x2 �
8 is a half-space. Thus, the feasible region for our LP is the intersection of the following
five half-spaces: 2x1 � x2 � 8, x3 � 10, x1 � 0, x2 � 0, and x3 � 0. The intersection of
half-spaces is called a polyhedron. The feasible region for our LP is the prism pictured
in Figure 5.

On each face (or facet) of the feasible region, one constraint (or sign restriction) is
binding for all points on that face. For example, the constraint 2x1 � x2 � 8 is binding
for all points on the face ABCD; x3 � 0 is binding on face ABF; x3 � 10 is binding on
face DEC; x2 � 0 is binding on face ADEF; x1 � 0 is binding on face CBFE.

Clearly, the corner (or extreme) points of the LP’s feasible region are A, B, C, D, E,
and F. In this case, the correspondence between the bfs and corner points is as shown in
Table 2.

To illustrate the concept of adjacent basic feasible solutions, note that corner points A,

20
10

n
m

n
m
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†In solving many LPs with 50 variables and m � 50 constraints, Chvàtal (1983) found that the simplex algo-
rithm examined an average of 2m basic feasible solutions before finding an LP’s optimal solution.



E, and B are adjacent to corner point F. Thus, if the simplex algorithm begins at F, then
we can be sure that the next bfs to be considered will be A, E, or B.
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F I G U R E  5
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Three Dimensions

TA B L E  2
Correspondence between bfs and Corner Points

Basic Corresponds to
Variables Basic Feasible Solution Corner Point

x1, x3 x1 � 4, x3 � 10, x2 � s1 � s2 � 0 D
s1, s2 s1 � 8, s2 � 10, x1 � x2 � x3 � 0 F
s1, x3 s1 � 8, x3 � 10, x1 � x2 � s2 � 0 E
x2, x3 x2 � 8, x3 � 10, x1 � s1 � s2 � 0 C
x2, s2 x2 � 8, s2 � 10, x1 � x3 � s1 � 0 B
x1, s2 x1 � 4, s2 � 10, x2 � x3 � s1 � 0 A

P R O B L E M S
Group A

1 For the Giapetto problem (Example 1 in Chapter 3),
show how the basic feasible solutions to the LP in standard
form correspond to the extreme points of the feasible region.

2 For the Dorian problem (Example 2 in Chapter 3), show
how the basic feasible solutions to the LP in standard form
correspond to the extreme points of the feasible region.

3 Widgetco produces two products: 1 and 2. Each requires
the amounts of raw material and labor, and sells for the
price given in Table 3.

Up to 350 units of raw material can be purchased at $2
per unit, while up to 400 hours of labor can be purchased at
$1.50 per hour. To maximize profit, Widgetco must solve
the following LP:

max z � 2x1 � 2.5x2

s.t. x1 � 2x2 � 350 (Raw material)

2x1 � x2 � 400 (Labor)
x1, x2 � 0

Here, xi � number of units of product i produced. Demon-
strate the correspondence between corner points and basic
feasible solutions.

4 For the Leather Limited problem, represent the point
(10, 20) in the form cd � �i�k

i�1 
ibi.

5 For the Dorian problem, represent the point (10,40) in
the form cd � �i�k

i�1 
ibi.

Group B

6 For an LP in standard form with constraints Ax � b and
x � 0, show that d is a direction of unboundedness if and

TA B L E  3

Product 1 Product 2

Raw material 1 unit 2 units
Labor 2 hours 1 hour
Sales price $7 $8



only if Ad � 0 and d � 0.

7 Recall that Example 5 of Chapter 3 is an unbounded LP. Find a direction of unboundedness along which we can move for
which the objective function becomes arbitrarily large.

4.5 The Simplex Algorithm
We now describe how the simplex algorithm can be used to solve LPs in which the goal
is to maximize the objective function. The solution of minimization problems is discussed
in Section 4.4.

The simplex algorithm proceeds as follows:

Step 1 Convert the LP to standard form (see Section 4.1).

Step 2 Obtain a bfs (if possible) from the standard form.

Step 3 Determine whether the current bfs is optimal.

Step 4 If the current bfs is not optimal, then determine which nonbasic variable should
become a basic variable and which basic variable should become a nonbasic variable to
find a new bfs with a better objective function value.

Step 5 Use EROs to find the new bfs with the better objective function value. Go back
to step 3.

In performing the simplex algorithm, write the objective function

z � c1x1 � c2x2 � 			 � cnxn

in the form

z � c1x1 � c2x2 � 			 � cnxn � 0

We call this format the row 0 version of the objective function (row 0 for short).

The Dakota Furniture Company manufactures desks, tables, and chairs. The manufacture
of each type of furniture requires lumber and two types of skilled labor: finishing and car-
pentry. The amount of each resource needed to make each type of furniture is given in
Table 4.

Currently, 48 board feet of lumber, 20 finishing hours, and 8 carpentry hours are avail-
able. A desk sells for $60, a table for $30, and a chair for $20. Dakota believes that de-
mand for desks and chairs is unlimited, but at most five tables can be sold. Because the
available resources have already been purchased, Dakota wants to maximize total revenue.
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Dakota Furniture CompanyE X A M P L E  2

TA B L E  4
Resource Requirements for Dakota Furniture

Resource Desk Table Chair

Lumber (board ft) 8 6.5 1.5
Finishing hours 4 2.5 1.5
Carpentry hours 2 1.5 0.5



Defining the decision variables as

x1 � number of desks produced

x2 � number of tables produced

x3 � number of chairs produced

it is easy to see that Dakota should solve the following LP:

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 6x2 � x3 � 48 (Lumber constraint)

4x1 � 2x2 � 1.5x3 � 20 (Finishing constraint)

2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

x2 � 5 (Limitation on table demand)

x1, x2, x3 � 0

Convert the LP to Standard Form

We begin the simplex algorithm by converting the constraints of the LP to the standard
form discussed in Section 4.1. Then we convert the LP’s objective function to the row 0
format. To put the constraints in standard form, we simply add slack variables s1, s2, s3,
and s4, respectively, to the four constraints. We label the constraints row 1, row 2, row 3,
and row 4, and add the sign restrictions si � 0 (i � 1, 2, 3, 4). Note that the row 0 for-
mat for our objective function is

z � 60x1 � 30x2 � 20x3 � 0

Putting rows 1–4 together with row 0 and the sign restrictions yields the equations and
basic variables shown in Table 5. A system of linear equations (such as canonical form 0,
shown in Table 5) in which each equation has a variable with a coefficient of 1 in that
equation (and a zero coefficient in all other equations) is said to be in canonical form. We
will soon see that if the right-hand side of each constraint in a canonical form is non-
negative, a basic feasible solution can be obtained by inspection.†
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†If a canonical form with nonnegative right-hand sides is not readily available, however, then the techniques
described in Sections 4.12 and 4.13 can be used to find a canonical form and a basic feasible solution.

TA B L E  5
Canonical Form 0

Basic
Row Variable

0 z � 60x1 � .30x2 � .20x3 � s1 � s2 � s3 � s4 � 0 z1 � 0
1 z � 68x1 � 1.6x2 � 1.6x3 � s1 � s2 � s3 � s4 � 48 s1 � 48
2 z � 64x1 � 1.2x2 � 1.5x3 � s1 � s2 � s3 � s4 � 20 s2 � 20
3 z � 62x1 � 1.5x2 � 0.5x3 � s1 � s2 � s3 � s4 � 8 s3 � 8
4 z � 60x1 � 1.5x2 � 1.5x3 � s1 � s2 � s3 � s4 � 5 s4 � 5



From Section 4.2, we know that the simplex algorithm begins with an initial basic fea-
sible solution and attempts to find better ones. After obtaining a canonical form, we there-
fore search for the initial bfs. By inspection, we see that if we set x1 � x2 � x3 � 0, we
can solve for the values of s1, s2, s3, and s4 by setting si equal to the right-hand side of
row i.

BV � {s1, s2, s3, s4} and NBV � {x1, x2, x3}

The basic feasible solution for this set of basic variables is s1 � 48, s2 � 20, s3 � 8, 
s4 � 5, x1 � x2 � x3 � 0. Observe that each basic variable may be associated with the
row of the canonical form in which the basic variable has a coefficient of 1. Thus, for
canonical form 0, s1 may be thought of as the basic variable for row 1, as may s2 for row
2, s3 for row 3, and s4 for row 4.

To perform the simplex algorithm, we also need a basic (although not necessarily non-
negative) variable for row 0. Because z appears in row 0 with a coefficient of 1, and z
does not appear in any other row, we use z as its basic variable. With this convention, the
basic feasible solution for our initial canonical form has

BV � {z, s1, s2, s3, s4} and NBV � {x1, x2, x3}

For this basic feasible solution, z � 0, s1 � 48, s2 � 20, s3 � 8, s4 � 5, x1 � x2 � x3 � 0.
As this example indicates, a slack variable can be used as a basic variable for an equa-

tion if the right-hand side of the constraint is nonnegative.

Is the Current Basic Feasible Solution Optimal?

Once we have obtained a basic feasible solution, we need to determine whether it is op-
timal; if the bfs is not optimal, then we try to find a bfs adjacent to the initial bfs with a
larger z-value. To do this, we try to determine whether there is any way that z can be in-
creased by increasing some nonbasic variable from its current value of zero while hold-
ing all other nonbasic variables at their current values of zero. If we solve for z by re-
arranging row 0, then we obtain

z � 60x1 � 30x2 � 20x3 (9)

For each nonbasic variable, we can use (9) to determine whether increasing a nonbasic
variable (and holding all other nonbasic variables at zero) will increase z. For example,
suppose we increase x1 by 1 (holding the other nonbasic variables x2 and x3 at zero). Then
(9) tells us that z will increase by 60. Similarly, if we choose to increase x2 by 1 (holding
x1 and x3 at zero), then (9) tells us that z will increase by 30. Finally, if we choose to in-
crease x3 by 1 (holding x1 and x2 at zero), then (9) tells us that z will increase by 20. Thus,
increasing any of the nonbasic variables will increase z. Because a unit increase in x1

causes the largest rate of increase in z, we choose to increase x1 from its current value of
zero. If x1 is to increase from its current value of zero, then it will have to become a ba-
sic variable. For this reason, we call x1 the entering variable. Observe that x1 has the
most negative coefficient in row 0.

Determine the Entering Variable

We choose the entering variable (in a max problem) to be the nonbasic variable with the
most negative coefficient in row 0 (ties may be broken in an arbitrary fashion). Because
each one-unit increase of x1 increases z by 60, we would like to make x1 as large as pos-
sible. What limits how large we can make x1? Note that as x1 increases, the values of the
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current basic variables (s1, s2, s3, and s4) will change. This means that increasing x1 may
cause a basic variable to become negative. With this in mind, we look at how increasing
x1 (while holding x2 � x3 � 0) changes the values of the current set of basic variables.
From row 1, we see that s1 � 48 � 8x1 (remember that x2 � x3 � 0). Because the sign
restriction s1 � 0 must be satisfied, we can only increase x1 as long as s1 � 0, or 48 �
8x1 � 0, or x1 � �

4
8
8
� � 6. From row 2, s2 � 20 � 4x1. We can only increase x1 as long as

s2 � 0, so x1 must satisfy 20 � 4x1 � 0 or x1 � �
2
4
0
� � 5. From row 3, s3 � 8 � 2x1 so 

x1 � �
8
2

� � 4. Similarly, we see from row 4 that s4 � 5. Thus, whatever the value of x1, s4

will be nonnegative. Summarizing,

s1 � 0 for x1 � �
4
8
8
� � 6

s2 � 0 for x1 � �
2
4
0
� � 5

s3 � 0 for x1 � �
8
2

� � 4

s4 � 0 for all values of x1

This means that to keep all the basic variables nonnegative, the largest that we can make
x1 is min {�

4
8
8
�, �

2
4
0
�, �

8
2

�} � 4. If we make x1  4, then s3 will become negative, and we will
no longer have a basic feasible solution. Notice that each row in which the entering vari-
able had a positive coefficient restricted how large the entering variable could become.
Also, for any row in which the entering variable had a positive coefficient, the row’s ba-
sic variable became negative when the entering variable exceeded

(10)

If the entering variable has a nonpositive coefficient in a row (such as x1 in row 4), the row’s
basic variable will remain positive for all values of the entering variable. Using (10), we can
quickly compute how large x1 can become before a basic variable becomes negative.

Row 1 limit on x1 � �
4
8
8
� � 6

Row 2 limit on x1 � �
2
4
0
� � 5

Row 3 limit on x1 � �
8
2

� � 4

Row 4 limit on x1 � no limit (Because coefficient of x1 in row 4 is nonpositive)

We can state the following rule for determining how large we can make an entering variable.

The Ratio Test

When entering a variable into the basis, compute the ratio in (10) for every constraint in
which the entering variable has a positive coefficient. The constraint with the smallest ra-
tio is called the winner of the ratio test. The smallest ratio is the largest value of the en-
tering variable that will keep all the current basic variables nonnegative. In our example,
row 3 was the winner of the ratio test for entering x1 into the basis.

Find a New Basic Feasible Solution: 
Pivot in the Entering Variable

Right-hand side of row
����
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Returning to our example, we know that the largest we can make x1 is 4. For x1 to equal 4,
it must become a basic variable. Looking at rows 1–4, we see that if we make x1 a basic
variable in row 1, then x1 will equal �

4
8
8
� � 6; in row 2, x1 will equal �

2
4
0
� � 5; in row 3, x1

will equal �
8
2

� � 4. Also, because x1 does not appear in row 4, x1 cannot be made a basic vari-
able in row 4. Thus, if we want to make x1 � 4, then we have to make it a basic variable in
row 3. The fact that row 3 was the winner of the ratio test illustrates the following rule.

In Which Row Does the Entering Variable Become Basic?

Always make the entering variable a basic variable in a row that wins the ratio test (ties
may be broken arbitrarily).

To make x1 a basic variable in row 3, we use elementary row operations to make x1 have
a coefficient of 1 in row 3 and a coefficient of 0 in all other rows. This procedure is called
pivoting on row 3; and row 3 is the pivot row. The final result is that x1 replaces s3 as the
basic variable for row 3. The term in the pivot row that involves the entering basic variable
is called the pivot term. Proceeding as we did when we studied the Gauss–Jordan method
in Chapter 2, we make x1 a basic variable in row 3 by performing the following EROs.

ERO 1 Create a coefficient of 1 for x1 in row 3 by multiplying row 3 by �
1
2

�. The resulting
row (marked with a prime to show it is the first iteration) is

x1 � 0.75x2 � 0.25x3 � 0.5s3 � 4 (row 3�)

ERO 2 To create a zero coefficient for x1 in row 0, replace row 0 with 60(row 3�) � row 0.

z � 15x2 � 5x3 � 30s3 � 240 (row 0�)

ERO 3 To create a zero coefficient for x1 in row 1, replace row 1 with �8(row 3�) � row 1.

�x3 � s1 � 4s3 � 16 (row 1�)

ERO 4 To create a zero coefficient for x1 in row 2, replace row 2 with �4(row 3�) � row 2.

�x2 � 0.5x3 � s2 � 2s3 � 4 (row 2�)

Because x1 does not appear in row 4, we don’t need to perform an ero to eliminate x1

from row 4. Thus, we may write the “new” row 4 (call it row 4� to be consistent with other
notation) as

x2 � s4 � 5 (row 4�)

Putting rows 0�–4� together, we obtain the canonical form shown in Table 6.
Looking for a basic variable in each row of the current canonical form, we find that

BV � {z, s1, s2, x1, s4} and NBV � {s3, x2, x3}
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TA B L E  6
Canonical Form 1

Basic
Row Variable

Row 0� z � 0.15x2 � 0.25x3 � s1 � s2 � .30s3 � s4 � 240 z � 240
Row 1� z1 � 0.15x2 � 0.25x3 � s1 � s2 � .34s3 � s4 � 16 s1 � 16
Row 2� z1 � 0.15x2 � 00.5x3 � s1 � s2 � .32s3 � s4 � 4 s2 � 4
Row 3� x1 � 0.75x2 � 0.25x3 � s1 � s2 � 0.5s3 � s4 � 4 x1 � 4
Row 4� z1 � 0.15x2 � 0.25x3 � s1 � s2 � .30s3 � s4 � 5 s4 � 5
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Thus, canonical form 1 yields the basic feasible solution z � 240, s1 � 16, s2 � 4, x1 �
4, s4 � 5, x2 � x3 � s3 � 0. We could have predicted that the value of z in canonical
form 1 would be 240 from the fact that each unit by which x1 is increased increases z by
60. Because x1 was increased by 4 units (from x1 � 0 to x1 � 4), we would expect that

Canonical form 1 z-value � initial z-value � 4(60)

� 0 � 240 � 240

In obtaining canonical form 1 from the initial canonical form, we have gone from one bfs
to a better (larger z-value) bfs. Note that the initial bfs and the improved bfs are adjacent.
This follows because the two basic feasible solutions have 4 � 1 � 3 basic variables (s1, s2,
and s4) in common (excluding z, which is a basic variable in every canonical form). Thus,
we see that in going from one canonical form to the next, we have proceeded from one bfs
to a better adjacent bfs. The procedure used to go from one bfs to a better adjacent bfs is
called an iteration (or sometimes, a pivot) of the simplex algorithm.

We now try to find a bfs that has a still larger z-value. We begin by examining canon-
ical form 1 (Table 6) to see if we can increase z by increasing the value of some nonba-
sic variable (while holding all other nonbasic variables equal to zero). Rearranging row
0� to solve for z yields

z � 240 � 15x2 � 5x3 � 30s3 (11)

From (11), we see that increasing the nonbasic variable x2 by 1 (while holding x3 � s3 �
0) will decrease z by 15. We don’t want to do that! Increasing the nonbasic variable s3 by
1 (holding x2 � x3 � 0) will decrease z by 30. Again, we don’t want to do that. On the
other hand, increasing x3 by 1 (holding x2 � s3 � 0) will increase z by 5. Thus, we choose
to enter x3 into the basis. Recall that our rule for determining the entering variable is to
choose the variable with the most negative coefficient in the current row 0. Because x3 is
the only variable with a negative coefficient in row 0�, it should be entered into the basis.

Increasing x3 by 1 will increase z by 5, so it is to our advantage to make x3 as large as
possible. We can increase x3 as long as the current basic variables (s1, s2, x1, and s4) re-
main nonnegative. To determine how large x3 can be, we must solve for the values of the
current basic variables in terms of x3 (holding x2 � s3 � 0). We obtain

From row 1�: s1 � 16 � x3

From row 2�: s2 � 4 � 0.5x3

From row 3�: x1 � 4 � 0.25x3

From row 4�: s4 � 5

These equations tell us that s1 � 0 and s4 � 0 will hold for all values of x3. From row
2�, we see that s2 � 0 will hold if 4 � 0.5x3 � 0, or x3 � �

0
4
.5
� � 8. From row 3�, x1 � 0

will hold if 4 � 0.25x3 � 0, or x3 � �
0.

4
25
� � 16. This shows that the largest we can make

x3 is min {�
0
4
.5
�, �

0.
4
25
�} � 8. This fact could also have been discovered by using (10) and the

ratio test, as follows:

Row 1�: no ratio (x3 has negative coefficient in row 1)

Row 2�: �
0
4
.5
� � 8

Row 3�: �
0.

4
25
� � 16

Row 4�: no ratio (x3 has a nonpositive coefficient in row 4)

Thus, the smallest ratio occurs in row 2�, and row 2� wins the ratio test. This means that
we should use EROs to make x3 a basic variable in row 2�.



ERO 1 Create a coefficient of 1 for x3 in row 2� by replacing row 2� with 2(row 2�):

�2x2 � x3 � 2s2 � 4s3 � 8 (row 2�)

ERO 2 Create a coefficient of 0 for x3 in row 0� by replacing row 0� with 5(row 2)� �
row 0�:

z � 5x2 � 10s2 � 10s3 � 280 (row 0�)

ERO 3 Create a coefficient of 0 for x3 in row 1� by replacing row 1� with row 2� �
row 1�:

�2x2 � s1 � 2s2 � 8s3 � 24 (row 1�)

ERO 4 Create a coefficient of 0 for x3 in row 3�, by replacing row 3� with ��
1
4

�(row 2�) � 3�:

x1 � 1.25x2 � 0.5s2 � 1.5s3 � 2 (row 3�)

Because x3 already has a zero coefficient in row 4�, we may write

x2 � s4 � 5 (row 4�)

Combining rows 0�– 4� gives the canonical form shown in Table 7.
Looking for a basic variable in each row of canonical form 2, we find

BV � {z, s1, x3, x1, s4} and NBV � {s2, s3, x2}

Canonical form 2 yields the following bfs: z � 280, s1 � 24, x3 � 8, x1 � 2, s4 � 5, 
s2 � s3 � x2 � 0. We could have predicted that canonical form 2 would have z � 280
from the fact that each unit of the entering variable x3 increased z by 5, and we have 
increased x3 by 8 units. Thus,

Canonical form 2 z-value � canonical form 1 z-value � 8(5)

� 240 � 40 � 280

Because the bfs’s for canonical forms 1 and 2 have (excluding z) 4 � 1 � 3 basic vari-
ables in common (s1, s4, x1), they are adjacent basic feasible solutions.

Now that the second iteration (or pivot) of the simplex algorithm has been completed,
we examine canonical form 2 to see if we can find a better bfs. If we rearrange row 0�
and solve for z, we obtain

z � 280 � 5x2 � 10s2 � 10s3 (12)

From (12), we see that increasing x2 by 1 (while holding s2 � s3 � 0) will decrease z by
5; increasing s2 by 1 (holding s3 � x2 � 0) will decrease z by 10; increasing s3 by 1 (hold-
ing x2 � s2 � 0) will decrease z by 10. Thus, increasing any nonbasic variable will cause
z to decrease. This might lead us to believe that our current bfs from canonical form 2 is
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TA B L E  7
Canonical Form 2

Basic
Row Variable

0� z � 0.15x2 � x3 � s1 � .10s2 � .10s3 � s4 � 280 z � 280
1� z1 � 0.12x2 � x3 � s1 � 0.2s2 � .38s3 � s4 � 24 s1 � 24
2� z1 � 0.12x2 � x3 � s1 � 0.2s2 � .34s3 � s4 � 8 x3 � 8
3� x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � s4 � 2 x1 � 2
4� z1 � 0.15x2 � x3 � s1 � 0.5s2 � .30s3 � s4 � 5 s4 � 5



an optimal solution. This is indeed correct! To see why, look at (12). We know that any
feasible solution to the Dakota Furniture problem must have x2 � 0, s2 � 0, and s3 � 0,
and �5x2 � 0, �10s2 � 0, and �10s3 � 0. Combining these inequalities with (12), it is
clear that any feasible solution must have z � 280 � terms that are � 0, and z � 280.
Our current bfs from canonical form 2 has z � 280, so it must be optimal.

The argument that we just used to show that canonical form 2 is optimal revolved
around the fact that each of its nonbasic variables had a nonnegative coefficient in row 0�.
This means that we can determine whether a canonical form’s bfs is optimal by applying
the following simple rule.

Is a Canonical Form Optimal (Max Problem)?

A canonical form is optimal (for a max problem) if each nonbasic variable has a non-
negative coefficient in the canonical form’s row 0.

R E M A R K S 1 The coefficient of a decision variable in row 0 is often referred to as the variable’s reduced cost.
Thus, in our optimal canonical form, the reduced costs for x1 and x3 are 0, and the reduced cost for
x2 is 5. The reduced cost of a nonbasic variable is the amount by which the value of z will decrease
if we increase the value of the nonbasic variable by 1 (while all the other nonbasic variables remain
equal to 0). For example, the reduced cost for the variable “tables” (x2) in canonical form 2 is 5.
From (12), we see that increasing x2 by 1 will reduce z by 5. Note that because all basic variables
(except z, of course) must have zero coefficients in row 0, the reduced cost for a basic variable will
always be 0. In Chapters 5 and 6, we discuss the concept of reduced costs in much greater detail.

These comments are correct only if the values of all the basic variables remain nonnegative af-
ter the nonbasic variable is increased by 1. Increasing x2 to 1 leaves x1, x3, and s1 all nonnegative,
so our comments are valid.
2 From canonical form 2, we see that the optimal solution to the Dakota Furniture problem is to
manufacture 2 desks (x1 � 2) and 8 chairs (x3 � 8). Because x2 � 0, no tables should be made.
Also, s1 � 24 is reasonable because only 8 � 8(2) � 24 board feet of lumber are being used. Thus,
48 � 24 � 24 board feet of lumber are not being used. Similarly, s4 � 5 makes sense because, al-
though up to 5 tables could have been produced, 0 tables are actually being produced. Thus, the
slack in constraint 4 is 5 � 0 � 5. Because s2 � s3 � 0, all available finishing and carpentry hours
are being utilized, so the finishing and carpentry constraints are binding.
3 We have chosen the entering variable to be the one with the most negative coefficient in row 0,
but this may not always lead us quickly to the optimal bfs (see Review Problem 11). Actually, even
if we choose the variable with the smallest (in absolute value) negative coefficient, the simplex al-
gorithm will eventually find the LP’s optimal solution.
4 Although any variable with a negative row 0 coefficient may be chosen to enter the basis, the
pivot row must be chosen by the ratio test. To show this formally, suppose that we have chosen to
enter xi into the basis, and in the current tableau xi is a basic variable in row k. Then row k may be
written as

a�kixi � 			 � b�k

Consider any other constraint (say, row j) in the canonical form. Row j in the current canonical form
may be written as

a�jixi � 			 � b�j

If we pivot on row k, row k becomes

xi � 			 � �
a�
b�

k

k

i
�

The new row j after the pivot will be obtained by adding �a�ji times the last equation to row j of
the current canonical form. This yields a new row j of

0xi � 			 � b�j � �
b�
a�
ka�
ki

ji
�

We know that after the pivot, each constraint must have a nonnegative right-hand side. Thus, 
a�ki  0 must hold to ensure that row k has a nonnegative right-hand side after the pivot. Suppose
a�ji  0. Then, to ensure that row j will have a nonnegative right-hand side after the pivot, we 
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must have

�
b�j �

a�k

b�

i

ka�ji
� � 0

or (because a�ji  0)

�
a�

b�

j

j

i

� � �
a�

b�

k

k

i

�

Thus, row k must be a “winner” of the ratio test to ensure that row j will have a nonnegative right-
hand side after the pivot is completed.

If a�ji � 0, then the right-hand side of row j will surely be nonnegative after the pivot. This fol-
lows because

� �
b�
a�
ka�
ki

ji
� � 0

will now hold.

As promised earlier, we have outlined an algorithm that proceeds from one bfs to a
better bfs. The algorithm stops when an optimal solution has been found. The convergence
of the simplex algorithm is discussed further in Section 4.11.

Summary of the Simplex Algorithm for a Max Problem

Step 1 Convert the LP to standard form.

Step 2 Find a basic feasible solution. This is easy if all the constraints are � with non-
negative right-hand sides. Then the slack variable si may be used as the basic variable for
row i. If no bfs is readily apparent, then use the techniques discussed in Sections 4.12 and
4.13 to find a bfs.

Step 3 If all nonbasic variables have nonnegative coefficients in row 0, then the current
bfs is optimal. If any variables in row 0 have negative coefficients, then choose the vari-
able with the most negative coefficient in row 0 to enter the basis. We call this variable
the entering variable.

Step 4 Use EROs to make the entering variable the basic variable in any row that wins
the ratio test (ties may be broken arbitrarily). After the EROs have been used to create a
new canonical form, return to step 3, using the current canonical form.

When using the simplex algorithm to solve problems, there should never be a constraint
with a negative right-hand side (it is okay for row 0 to have a negative right-hand side;
see Section 4.6). A constraint with a negative right-hand side is usually the result of an
error in the ratio test or in performing one or more EROs. If one (or more) of the con-
straints has a negative right-hand side, then there is no longer a bfs, and the rules of the
simplex algorithm may not lead to a better bfs.

Representing Simplex Tableaus

Rather than writing each variable in every constraint, we often used a shorthand display
called a simplex tableau. For example, the canonical form

z � 3x1 � x2 � s1 � s1 � 6

z � 3x1 � x2 � s1 � s1 � 4
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z � 2x1 � x2 � s1 � s2 � 3

would be written in abbreviated form as shown in Table 8 (rhs � right-hand side). This
format makes it very easy to spot basic variables: Just look for columns having a single

4 . 6 Using the Simplex Algorithm to Solve Minimization Problems 149

TA B L E  8
A Simplex Tableau

Basic
z x1 x2 s1 s2 rhs Variable

1 3 1 0 0 6 z2 � 6
0 1 0 1 0 4 s1 � 4
0 2 1 0 1 3 s2 � 3

entry of 1 and all other entries
equal to 0 (s1 and s2). In our
use of simplex tableaus, we
will encircle the pivot term
and denote the winner of the
ratio test by *.

P R O B L E M S
Group A

1 Use the simplex algorithm to solve the Giapetto problem
(Example 1 in Chapter 3).

2 Use the simplex algorithm to solve the following LP:
max z � 2x1 � 3x2 � 6
s.t. x1 � 2x2 � 6

s.t. 2x1 � x2 � 8
x1, x2 � 0

3 Use the simplex algorithm to solve the following
problem:

max z � 2x1 � x2 � x3 � 60
s.t. 3x1 � x2 � x3 � 60

s.t. x1 � x2 � 2x3 � 10
s.t. x1 � x2 � x3 � 20

x1, x2, x3 � 0

4 Suppose you want to solve the Dorian problem (Example
2 in Chapter 3) by the simplex algorithm. What difficulty
would occur?

5 Use the simplex algorithm to solve the following LP:
max z � x1 � x2 � 100
s.t. 4x1 � x2 � 100
s.t. 4x1 � x2 � 80
s.t. 4x1 � x1 � 40

x1, x2 � 0

6 Use the simplex algorithm to solve the following LP:
max z � x1 � x2 � x3

s.t. x1 � 2x2 � 2x3 � 20

s.t. 2x1 � x2 � 2x3 � 20
s.t. 2x1 � 2x2 � x3 � 20

x1, x2, x3 � 0

Group B

7 It has been suggested that at each iteration of the simplex algorithm, the entering variable should be (in a maximization
problem) the variable that would bring about the greatest increase in the objective function. Although this usually results in
fewer pivots than the rule of entering the most negative row 0 entry, the greatest increase rule is hardly ever used. Why not?



4.6 Using the Simplex Algorithm to Solve Minimization Problems
There are two different ways that the simplex algorithm can be used to solve minimiza-
tion problems. We illustrate these methods by solving the following LP:

min z � 2x1 � 3x2

s.t. x1 � x2 � 4
(LP 2)

s.t. x1 � x2 � 6

x1, x2 � 0

Method 1

The optimal solution to LP 2 is the point (x1, x2) in the feasible region for LP 2 that makes
z � 2x1 � 3x2 the smallest. Equivalently, we may say that the optimal solution to LP 2 is
the point in the feasible region that makes �z � �2x1 � 3x2 the largest. This means that
we can find the optimal solution to LP 2 by solving LP 2�:

max � z � �2x1 � 3x2

s.t. x1 � x2 � 4
(LP 2�)

s.t. x1 � x2 � 6

x1, x2 � 0

In solving LP 2�, we will use �z as the basic variable for row 0. After adding slack vari-
ables s1 and s2 to the two constraints, we obtain the initial tableau in Table 9. Because x2 is
the only variable with a negative coefficient in row 0, we enter x2 into the basis. The ratio
test indicates that x2 should enter the basis in the first constraint, row 1. The resulting tableau
is shown in Table 10. Because each variable in row 0 has a nonnegative coefficient, this is
an optimal tableau. Thus, the optimal solution to LP 2� is �z � 12, x2 � 4, s2 � 10, x1 �
s1 � 0. Then the optimal solution to LP 2 is z � �12, x2 � 4, s2 � 10, x1 � s1 � 0. Sub-
stituting the values of x1 and x2 into LP 2’s objective function, we obtain
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TA B L E  9
Initial Tableau for LP 2—Method 1

Basic
�z x1 x2 s1 s2 rhs Variable Ratio

1 2 �3 0 0 0 �z2 � 0
0 1 1 1 0 4 �s1 � 4 �

4
1

� � 4*
0 1 �1 0 1 6 �s2 � 6 None

TA B L E  10
Optimal Tableau for LP 2—Method 1

Basic
�z x1 x2 s1 s2 rhs Variable

1 5 0 3 0 12 �z2 � 12
0 1 1 1 0 14 �x2 � 41
0 2 0 1 1 10 �s2 � 10
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z � 2x1 � 3x2 � 2(0) � 3(4) � �12

In summary, multiply the objective function for the min problem by �1 and solve the
problem as a maximization problem with objective function �z. The optimal solution to the
max problem will give you the optimal solution to the min problem. Remember that (opti-
mal z-value for min problem) � �(optimal objective function value z for max problem).

Method 2

A simple modification of the simplex algorithm can be used to solve min problems di-
rectly. Modify Step 3 of the simplex as follows: If all nonbasic variables in row 0 have
nonpositive coefficients, then the current bfs is optimal. If any nonbasic variable in row
0 has a positive coefficient, choose the variable with the “most positive” coefficient in row

0 to enter the basis.
This modification of the

simplex algorithm works be-
cause increasing a nonbasic
variable with a positive coef-
ficient in row 0 will decrease
z. If we use this method to
solve LP 2, then our initial
tableau will be as shown in
Table 11. Because x2 has the
most positive coefficient in
row 0, we enter x2 into the ba-
sis. The ratio test says that x2

should enter the basis in row
1, resulting in Table 12. Be-
cause each variable in row 0
has a nonpositive coefficient,
this is an optimal tableau.†

Thus, the optimal solution to
LP 2 is (as we have already
seen) z � �12, x2 � 4, s2 �
10, x1 � s1 � 0.

TA B L E  11
Initial Tableau for LP 2—Method 2

Basic
z x1 x2 s1 s2 rhs Variable Ratio

1 �2 �3 0 0 0 z2 � 0
0 �1 1 1 0 4 s1 � 4 �

4
1

� � 4*
0 �1 �1 0 1 6 s2 � 6 None

TA B L E  12
Optimal Tableau for LP 2—Method 2

Basic
z x1 x2 s1 s2 rhs Variable

1 �5 0 �3 0 �12 z2 � �12
0 �1 1 �1 0 �14 x2 � 4
0 �2 0 �1 1 �10 s2 � 10

†To see that this tableau is optimal, note that from row 0, z � �12 � 5x1 � 3s1. Because x1 � 0 and s1 � 0,
this shows that z � �12. Thus, the current bfs (which has z � �12) must be optimal.
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Sensitivity Analysis and Duality

Two of the most important topics in linear programming are sensitivity analysis and duality. Af-
ter studying these important topics, the reader will have an appreciation of the beauty and
logic of linear programming and be ready to study advanced linear programming topics such
as those discussed in Chapter 10.

In Section 6.1, we illustrate the concept of sensitivity analysis through a graphical example.
In Section 6.2, we use our knowledge of matrices to develop some important formulas, which
are used in Sections 6.3 and 6.4 to develop the mechanics of sensitivity analysis. The re-
mainder of the chapter presents the important concept of duality. Duality provides many in-
sights into the nature of linear programming, gives us the useful concept of shadow prices,
and helps us understand sensitivity analysis. It is a necessary basis for students planning to
take advanced topics in linear and nonlinear programming.

6.1 A Graphical Introduction to Sensitivity Analysis
Sensitivity analysis is concerned with how changes in an LP’s parameters affect the LP’s
optimal solution.

Reconsider the Giapetto problem of Section 3.1:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100 (Finishing constraint)

s.t. 2x1 � x2 � 800 (Carpentry constraint)

s.t. x1 � x2 � 400 (Demand constraint)

s.t. 2 � x1, x2 � 0

where

x1 � number of soldiers produced per week

x2 � number of trains produced per week

The optimal solution to this problem is z � 180, x1 � 20, x2 � 60 (point B in Figure 1),
and it has x1, x2, and s3 (the slack variable for the demand constraint) as basic variables.
How would changes in the problem’s objective function coefficients or right-hand sides
change this optimal solution?

Graphical Analysis of the Effect of a Change 
in an Objective Function Coefficient

If the contribution to profit of a soldier were to increase sufficiently, then it would be op-
timal for Giapetto to produce more soldiers (s3 would become nonbasic). Similarly, if the
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contribution to profit of a soldier were to decrease sufficiently, it would be optimal for Gi-
apetto to produce only trains (x1 would now be nonbasic). We now show how to deter-
mine the values of the contribution to profit for soldiers for which the current optimal ba-
sis will remain optimal.

Let c1 be the contribution to profit by each soldier. For what values of c1 does the cur-
rent basis remain optimal?

At present, c1 � 3, and each isoprofit line has the form 3x1 � 2x2 � constant, or 
x2 � ��

3
2
x
� � �

con
2
stant
�, and each isoprofit line has a slope of ��

3
2

�. From Figure 1, we see that
if a change in c1 causes the isoprofit lines to be flatter than the carpentry constraint, then
the optimal solution will change from the current optimal solution (point B) to a new op-
timal solution (point A). If the profit for each soldier is c1, then the slope of each isoprofit
line will be ��

c
2
1�. Because the slope of the carpentry constraint is �1, the isoprofit lines

will be flatter than the carpentry constraint if ��
c
2
1� � �1, or c1 	 2, and the current basis

will no longer be optimal. The new optimal solution will be (0, 80), point A in Figure 1.
If the isoprofit lines are steeper than the finishing constraint, then the optimal solution

will change from point B to point C. The slope of the finishing constraint is �2. If 
��

c
2
1� 	 �2, or c1 � 4, then the current basis is no longer optimal, and point C (40, 20)

will be optimal. In summary, we have shown that (if all other parameters remain un-
changed) the current basis remains optimal for 2 � c1 � 4, and Giapetto should still man-
ufacture 20 soldiers and 60 trains. Of course, even if 2 � c1 � 4, Giapetto’s profit will
change. For instance, if c1 � 4, Giapetto’s profit will now be 4(20) � 2(60) � $200 in-
stead of $180.

Graphical Analysis of the Effect of a Change in a Right-Hand
Side on the LP’s Optimal Solution

A graphical analysis can also be used to determine whether a change in the right-hand
side of a constraint will make the current basis no longer optimal. Let b1 be the number
of available finishing hours. Currently, b1 � 100. For what values of b1 does the current
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basis remain optimal? From Figure 2, we see that a change in b1 shifts the finishing con-
straint parallel to its current position. The current optimal solution (point B in Figure 2)
is where the carpentry and finishing constraints are binding. If we change the value of b1,
then as long as the point where the finishing and carpentry constraints are binding re-
mains feasible, the optimal solution will still occur where these constraints intersect. From
Figure 2, we see that if b1 � 120, then the point where the finishing and carpentry con-
straints are both binding will lie on the portion of the carpentry constraint below point D.
Note that at point D, 2(40) � 40 � 120 finishing hours are used. In this region, x1 � 40,
and the demand constraint for soldiers is not satisfied. Thus, for b1 � 120, the current ba-
sis will no longer be optimal. Similarly, if b1 	 80, the carpentry and finishing constraints
will be binding at an infeasible point having x1 	 0, and the current basis will no longer
be optimal. Note that at point A, 0 � 80 � 80 finishing hours are used. Thus (if all other
parameters remain unchanged), the current basis remains optimal if 80 � b1 � 120.

Note that although for 80 � b1 � 120, the current basis remains optimal, the values
of the decision variables and the objective function value change. For example, if 80 �
b1 � 100, the optimal solution will change from point B to some other point on the line
segment AB. Similarly, if 100 � b1 � 120, then the optimal solution will change from
point B to some other point on the line BD.

As long as the current basis remains optimal, it is a routine matter to determine how
a change in the right-hand side of a constraint changes the values of the decision vari-
ables. To illustrate the idea, let b1 � number of available finishing hours. If we change b1

to 100 � 
, we know that the current basis remains optimal for �20 � 
 � 20. Note
that as b1 changes (as long as �20 � 
 � 20), the optimal solution to the LP is still the
point where the finishing-hour and carpentry-hour constraints are binding. Thus, if b1 �
100 � 
, we can find the new values of the decision variables by solving

2x1 � x2 � 100 � 
 and x1 � x2 � 80
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This yields x1 � 20 � 
 and x2 � 60 � 
. Thus, an increase in the number of available
finishing hours results in an increase in the number of soldiers produced and a decrease
in the number of trains produced.

If b2 (the number of available carpentry hours) equals 80 � 
, it can be shown (see
Problem 2) that the current basis remains optimal for �20 � 
 � 20. If we change the
value of b2 (keeping �20 � 
 � 20), then the optimal solution to the LP is still the point
where the finishing and carpentry constraints are binding. Thus, if b2 � 80 � 
, the op-
timal solution to the LP is the solution to

2x1 � x2 � 100 and x1 � x2 � 80 � 


This yields x1 � 20 � 
 and x2 � 60 � 2
, which shows that an increase in the amount
of available carpentry hours decreases the number of soldiers produced and increases the
number of trains produced.

Suppose b3, the demand for soldiers, is changed to 40 � 
. Then it can be shown (see
Problem 3) that the current basis remains optimal for 
 � �20. For 
 in this range, the
optimal solution to the LP will still occur where the finishing and carpentry constraints
are binding. Thus, the optimal solution will be the solution to

2x1 � x2 � 100 and x1 � x2 � 80

Of course, this yields x1 � 20 and x2 � 60, which illustrates an important point. In a con-
straint with positive slack (or positive excess) in an LP’s optimal solution, if we change
the right-hand side of the constraint to a value in the range where the current basis re-
mains optimal, the optimal solution to the LP is unchanged.

Shadow Prices

As we will see in Section 6.8, it is often important for managers to determine how a change
in a constraint’s right-hand side changes the LP’s optimal z-value. With this in mind, we de-
fine the shadow price for the ith constraint of an LP to be the amount by which the optimal
z-value is improved (improvement means increase in a max problem and decrease in a min
problem) if the right-hand side of the ith constraint is increased by 1. This definition applies
only if the change in the right-hand side of Constraint i leaves the current basis optimal.

For any two-variable LP, it is a simple matter to determine each constraint’s shadow
price. For example, we know that if 100 � 
 finishing hours are available (assuming that
the current basis remains optimal), then the LP’s optimal solution is x1 � 20 � 
 and 
x2 � 60 � 
. Then the optimal z-value will equal 3x1 � 2x2 � 3(20 � 
) � 2(60 � 
) �
180 � 
. Thus, as long as the current basis remains optimal, a unit increase in the num-
ber of available finishing hours will increase the optimal z-value by $1. So the shadow
price of the first (finishing hour) constraint is $1.

For the second (carpentry hour) constraint, we know that if 80 � 
 carpentry hours
are available (and the current basis remains optimal), then the optimal solution to the 
LP is x1 � 20 � 
 and x2 � 60 � 2
. Then the new optimal z-value is 3x1 � 2x2 �
3(20 � 
) � 2(60 � 2
) � 180 � 
. Thus, a unit increase in the number of carpentry
hours will increase the optimal z-value by $1 (as long as the current basis remains opti-
mal). So the shadow price of the second (carpentry hour) constraint is $1.

We now find the shadow price of the third (demand) constraint. If the right-hand side
is 40 � 
, then the optimal values of the decision variables remain unchanged, as long
as the current basis remains optimal. Then the optimal z-value will also remain un-
changed, which shows that the shadow price of the third (demand) constraint is $0. It turns
out that whenever the slack variable or excess variable for a constraint is positive in an
LP’s optimal solution, the constraint will have a zero shadow price.
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Suppose we increase the right-hand side of the ith constraint of an LP by 
bi(
bi 	 0
means that we are decreasing the right-hand side) and the current basis remains optimal.
Then each unit by which Constraint i’s right-hand side is increased will increase the op-
timal z-value (for a max problem) by the shadow price. Thus, the new optimal z-value is
given by

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi

For a minimization problem,

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi

For example, if 95 carpentry hours are available, then 
b2 � 15, and the new z-value is
given by

New optimal z-value � 180 � 15(1) � $195

We will continue our discussion of shadow prices in Section 6.8.

Importance of Sensitivity Analysis

Sensitivity analysis is important for several reasons. In many applications, the values of
an LP’s parameters may change. For example, the prices at which soldiers and trains are
sold may change, as may the availability of carpentry and finishing hours. If a parameter
changes, sensitivity analysis often makes it unnecessary to solve the problem again. For
example, if the profit contribution of a soldier increased to $3.50, we would not have to
solve the Giapetto problem again because the current solution remains optimal. Of course,
solving the Giapetto problem again would not be much work, but solving an LP with
thousands of variables and constraints again would be a chore. A knowledge of sensitiv-
ity analysis often enables the analyst to determine from the original solution how changes
in an LP’s parameters change the optimal solution.

Recall that we may be uncertain about the values of parameters in an LP, for example,
the weekly demand for soldiers. With the graphical method, it can be shown that if the
weekly demand for soldiers is at least 20, then the optimal solution to the Giapetto prob-
lem is still (20, 60) (see Problem 3 at the end of this section). Thus, even if Giapetto is
uncertain about the demand for soldiers, the company can still be fairly confident that it
is optimal to produce 20 soldiers and 60 trains.

Of course, the graphical approach is not useful for sensitivity analysis on an LP with
more than two variables. Before learning how to perform sensitivity analysis on an arbi-
trary LP, we need to use our knowledge of matrices to express simplex tableaus in matrix
form. This is the subject of Section 6.2.

P R O B L E M S
Group A

1 Show that if the contribution to profit for trains is
between $1.50 and $3, the current basis remains optimal. If
the contribution to profit for trains is $2.50, what would be
the new optimal solution?

2 Show that if available carpentry hours remain between
60 and 100, the current basis remains optimal. If between
60 and 100 carpentry hours are available, then would
Giapetto still produce 20 soldiers and 60 trains?

3 Show that if the weekly demand for soldiers is at least
20, the current basis remains optimal, and Giapetto should
still produce 20 soldiers and 60 trains.

4 For the Dorian Auto problem (Example 2 in Chapter 3),
a Find the range of values of the cost of a comedy ad
for which the current basis remains optimal.
b Find the range of values of the cost of a football ad
for which the current basis remains optimal.



6 . 3 Sensitivity Analysis 275

6.3 Sensitivity Analysis
We now explore how changes in an LP’s parameters (objective function coefficients, right-
hand sides, and technological coefficients) change the optimal solution. As described in
Section 6.1, the study of how an LP’s optimal solution depends on its parameters is called
sensitivity analysis. Our discussion focuses on maximization problems and relies heavily
on the formulas of Section 6.2. (The modifications for min problems are straightforward;
see Problem 8 at the end of this section.)

As in Section 6.2, we let BV be the set of basic variables in the optimal tableau. Given a
change (or changes) in an LP, we want to determine whether BV remains optimal. The me-
chanics of sensitivity analysis hinge on the following important observation. From Chapter 4,
we know that a simplex tableau (for a max problem) for a set of basic variables BV is opti-
mal if and only if each constraint has a nonnegative right-hand side and each variable has a
nonnegative coefficient in row 0. This follows, because if each constraint has a nonnegative
right-hand side, then BV’s basic solution is feasible, and if each variable in row 0 has a non-
negative coefficient, then there can be no basic feasible solution with a higher z-value than BV.
Our observation implies that whether a tableau is feasible and optimal depends only on the
right-hand sides of the constraints and on the coefficients of each variable in row 0. For ex-
ample, if an LP has variables x1, x2, . . . , x6, the following partial tableau would be optimal:

z � 2x2 � x4 � x6 � 6

z � 2x2 � x4 � x6 � 1

z � 2x2 � x4 � x6 � 2

z � 2x2 � x4 � x6 � 3

This tableau’s optimality is not affected by the parts of the tableau that are omitted.
Suppose we have solved an LP and have found that BV is an optimal basis. We can

use the following procedure to determine if any change in the LP will cause BV to be no
longer optimal.

Step 1 Using the formulas of Section 6.2, determine how changes in the LP’s parameters
change the right-hand side and row 0 of the optimal tableau (the tableau having BV as
the set of basic variables).

Step 2 If each variable in row 0 has a non-negative coefficient and each constraint has a
nonnegative right-hand side, then BV is still optimal. Otherwise, BV is no longer optimal.

If BV is no longer optimal, then you can find the new optimal solution by using the
Section 6.2 formulas to recreate the entire tableau for BV and then continuing the sim-
plex algorithm with the BV tableau as your starting tableau.

There can be two reasons why a change in an LP’s parameters causes BV to be no
longer optimal. First, a variable (or variables) in row 0 may have a negative coefficient.
In this case, a better (larger z-value) bfs can be obtained by pivoting in a nonbasic vari-
able with a negative coefficient in row 0. If this occurs, we say that BV is now a subop-
timal basis. Second, a constraint (or constraints) may now have a negative right-hand side.
In this case, at least one member of BV will now be negative and BV will no longer yield
a bfs. If this occurs, we say that BV is now an infeasible basis.

2 For the following LP, x2 and s1 are basic variables in the
optimal tableau. Use the formulas of this section to
determine the optimal tableau.

max z � �x1 � x2

s.t. 2x1 � x2 � 4
s.t. x1 � x2 � 2
s.t. �x1, x2 � 0
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We illustrate the mechanics of sensitivity analysis in the Dakota Furniture example.
Recall that

x1 � number of desks manufactured

x2 � number of tables manufactured

x3 � number of chairs manufactured

The objective function for the Dakota problem was

max z � 60x1 � 30x2 � 20x3

and the initial tableau was

z � 60x1 � .30x2 � .20x3 � s1 � s2 � s3 � 0

z � 8x1 � .36x2 � 1.5x3 � s1 � s2 � s3 � 48 (Lumber constraint) (12)
z � 4x1 � 1.2x2 � 1.5x3 � s1 � s2 � s3 � 20 (Finishing constraint)

z � 2x1 � 1.5x2 � 0.5x3 � s1 � s2 � s3 � 8 (Carpentry constraint)

The optimal tableau was

zx1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � . 8s3 � 24
(13)

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8

zx1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2

Note that BV � {s1, x3, x1} and NBV � {x2, s2, s3}. The optimal bfs is z � 280, s1 �
24, x3 � 8, x1 � 2, x2 � 0, s2 � 0, s3 � 0.

We now discuss how six types of changes in an LP’s parameters change the optimal
solution:

Change 1 Changing the objective function coefficient of a nonbasic variable

Change 2 Changing the objective function coefficient of a basic variable

Change 3 Changing the right-hand side of a constraint

Change 4 Changing the column of a nonbasic variable

Change 5 Adding a new variable or activity

Change 6 Adding a new constraint (see Section 6.11)

Changing the Objective Function Coefficient 
of a Nonbasic Variable

In the Dakota problem, the only nonbasic decision variable is x2 (tables). Currently, the
objective function coefficient of x2 is c2 � 30. How would a change in c2 affect the 
optimal solution to the Dakota problem? More specifically, for what values of c2 would
BV � {s1, x3, x1} remain optimal?

Suppose we change the objective function coefficient of x2 from 30 to 30 � 
. Then 

represents the amount by which we have changed c2 from its current value. For what val-
ues of 
 will the current set of basic variables (the current basis) remain optimal? We be-
gin by determining how changing c2 from 30 to 30 � 
 will change the BV tableau. Note
that B�1 and b are unchanged, and therefore, from (6), the right-hand side of BV’s tableau
(B�1b) has not changed, so BV is still feasible. Because x2 is a nonbasic variable, cBV has
not changed. From (10), we can see that the only variable whose row 0 coefficient will be



changed by a change in c2 is x2. Thus, BV will remain optimal if cc�2 � 0, and BV will be
suboptimal if cc�2 	 0. In this case, z could be improved by entering x2 into the basis.

We have

a2 � � �
and c2 � 30 � 
. Also, from Section 6.2, we know that cBVB�1 � [0 10 10]. Now
(10) shows that

cc�2 � [0 10 10] � � � (30 � 
) � 35 � 30 � 
 � 5 � 


Thus, cc�2 � 0 holds, and BV will remain optimal, if 5 � 
 � 0, or 
 � 5. Similarly,
c�2 	 0 holds if 
 � 5, but then BV is no longer optimal. This means that if the price of
tables is decreased or increased by $5 or less, BV remains optimal. Thus, for c2 � 30 �
5 � 35, BV remains optimal.

If BV remains optimal after a change in a nonbasic variable’s objective function coef-
ficient, the values of the decision variables and the optimal z-value remain unchanged.
This is because a change in the objective function coefficient for a nonbasic variable
leaves the right-hand side of row 0 and the constraints unchanged. For example, if the
price of tables increases to $33 (c2 � 33), the optimal solution to the Dakota problem re-
mains unchanged (Dakota should still make 2 desks and 8 chairs, and z � 280). On the
other hand, if c2 � 35, BV will no longer be optimal, because cc�2 	 0. In this case, we
find the new optimal solution by recreating the BV tableau and then using the simplex al-
gorithm. For example, if c2 � 40, we know that the only part of the BV tableau that will
change is the coefficient of x2 in row 0. If c2 � 40, then

cc�2 � [0 10 10] � � � 40 � �5

Now the BV “final” tableau is as shown in Table 2. This is not an optimal tableau (it
is suboptimal), and we can increase z by making x2 a basic variable in row 3. The result-
ing tableau is given in Table 3. This is an optimal tableau. Thus, if c2 � 40, the optimal
solution to the Dakota problem changes to z � 288, s1 � 27.2, x3 � 11.2, x2 � 1.6, 
x1 � 0, s2 � 0, s3 � 0. In this case, the increase in the price of tables has made tables
sufficiently more attractive to induce Dakota to manufacture them. Note that after chang-
ing a nonbasic variable’s objective function coefficient, it may, in general, take more than
one pivot to find the new optimal solution.

There is a more insightful way to show that the current basis in the Dakota problem
remains optimal as long as the price of tables is decreased or increased by $5 or less. From
the optimal row 0 in (13), we see that if c2 � 30, then

z � 280 � 10s2 � 10s3 � 5x2

This tells us that each table that Dakota manufactures will decrease revenue by $5 (in
other words, the reduced cost for tables is 5). If we increase the price of tables by more
than $5, each table would now increase Dakota’s revenue. For example, if c2 � 36, each
table would increase revenues by 6 � 5 � $1 and Dakota should manufacture tables.
Thus, as before, we see that for 
 � 5, the current basis is no longer optimal. This analy-
sis yields another interpretation of the reduced cost of a nonbasic variable: The reduced
cost for a nonbasic variable (in a max problem) is the maximum amount by which the
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variable’s objective function coefficient can be increased before the current basis becomes
suboptimal, and it becomes optimal for the nonbasic variable to enter the basis.

In summary, if the objective function coefficient for a nonbasic variable xj is changed,
the current basis remains optimal if cc�j � 0. If cc�j 	 0, then the current basis is no longer
optimal, and xj will be a basic variable in the new optimal solution.

Changing the Objective Function 
Coefficient of a Basic Variable

In the Dakota problem, the decision variables x1 (desks) and x3 (chairs) are basic variables. We
now explain how a change in the objective function coefficient of a basic variable will affect
an LP’s optimal solution. We begin by analyzing how this change affects the BV tableau. Be-
cause we are not changing B (or therefore B�1) or b, (6) shows that the right-hand side of each
constraint will remain unchanged, and BV will remain feasible. Because we are changing cBV,
however, so cBVB�1 will change. From (10), we see that a change in cBVB�1 may change more
than one coefficient in row 0. To determine whether BV remains optimal, we must use (10)
to recompute row 0 for the BV tableau. If each variable in row 0 still has a nonnegative co-
efficient, BV remains optimal. Otherwise, BV is now suboptimal. To illustrate the preceding
ideas, we analyze how a change in the objective function coefficient for x1 (desks) from its
current value of c1 � 60 affects the optimal solution to the Dakota problem.

Suppose that c1 is changed to 60 � 
, changing cBV to cBV � [0 20 60 � 
].
To compute the new row 0, we need to know B�1. We could (as in Section 6.2) use the
Gauss–Jordan method to compute B�1. Recall that this method begins by writing down
the 3  6 matrix B|I3:

B|I3 � � � �
Then we use EROs to transform the first three columns of B|I3 to I3. At this point, the last
three columns of the resulting matrix will be B�1.
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TA B L E  2
“Final” (Suboptimal) Dakota Tableau ($40/Table)

Basic Variable Ratio

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280 z1 � 280
z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24 s1 � 24 None
z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8 x3 � 8 None
z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2 1.6*

TA B L E  3
Optimal Dakota Tableau ($40/Table)

Basic Variable

z � 1.4x1 � x2 � x3 � s1 � 1.8s2 � .16s3 � 288 z1 � 288
z � 1.6x1 � x2 � x3 � s1 � 1.2s2 � 5.6s3 � 27.2 s1 � 27.2
z � 1.6x1 � x2 � x3 � s1 � 1.2s2 � 1.6s3 � 11.2 x3 � 11.2
z � 0.8x1 � x2 � x3 � s1 � 0.4s2 � 1.2s3 � 1.6 x2 � 1.6



It turns out that when we solved the Dakota problem by the simplex algorithm, with-
out realizing it, we found B�1. To see why this is the case, note that in going from the
initial Dakota tableau (12) to the optimal Dakota tableau (13) we performed a series of
EROs on the constraints. These EROs transformed the constraint columns corresponding
to the initial basis (s1, s2, s3)

s1 s2 s3 to s1 s2 s3

from � � to � �
These same EROs have transformed the columns corresponding to BV � {s1, x3, x1}

s1 x3 x1 to s1 x3 x1

from B � � � to � �
This means that in solving the Dakota problem by the simplex algorithm, we have used
EROs to transform B to I3. These same EROs transformed I3 into

� � � B�1

We have discovered an extremely important fact: For any simplex tableau, B�1 is the
m  m matrix consisting of the columns in the current tableau that correspond to the ini-
tial tableau’s set of basic variables (taken in the same order). This means that if the start-
ing basis for an LP consists entirely of slack variables, then B�1 for the optimal tableau
is simply the columns for the slack variables in the constraints of the optimal tableau. In
general, if the starting basic variable for the ith constraint is the artificial variable ai, then
the ith column of B�1 will be the column for ai in the optimal tableau’s constraints. Thus,
we need not use the Gauss–Jordan method to find the optimal tableau’s B�1. We have al-
ready found B�1 by performing the simplex algorithm.

We can now compute what cBVB�1 will be if c1 � 60 � 
:

cBVB�1 � [0 20 60 � 
] � � (14)

cBVB�1 � [0 10 � 0.5
 10 � 1.5
]

Observe that for 
 � 0, (14) yields the original cBVB�1. We can now compute the new
row 0 corresponding to c1 � 60 � 
. After noting that

a1 � � �, a2 � � �, a3 � � �, c1 � 60 � 
, c2 � 30, c3 � 20

we can use (10) to compute the new row 0. Because s1, x3, and x1 are basic variables, their
coefficients in row 0 must still be 0. The coefficient of each nonbasic variable in the new
row 0 is as follows:

cc�2 � cBVB�1a2 � c2 � [0 10 � 0.5
 10 � 1.5
] � � � 30 � 5 � 1.25


6.0

2.0

1.5

1.0

1.5

0.5

6.0

2.0

1.5

8

4

2

�8.0

�4.0

1.5

2.0

2.0

�0.5

1

0

0

�8.0

�4.0

1.5

2.0

2.0

�0.5
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Coefficient of s2 in row 0 � second element of cBVB�1 � 10 � 0.5


Coefficient of s3 in row 0 � third element of cBVB�1 � 10 � 1.5


Thus, row 0 of the optimal tableau is now

z � (5 � 1.25
)x2 � (10 � 0.5
)s2 � (10 � 1.5
)s3 � ?

From the new row 0, we see that BV will remain optimal if and only if the following hold:

5 � 1.25
 � 0 (true iff † 
 � �4)

10 � 0.5
 � 0 (true iff† 
 � 20)

10 � 1.5
 � 0 (true iff† 
 � �(20/3))

This means that the current basis remains optimal as long as 
 � �4, 
 � 20, and 
 �
��

2
3
0
�. From Figure 3, we see that the current basis will remain optimal if and only if 

�4 � 
 � 20: If c1 is decreased by $4 or less or increased by up to $20, the current ba-
sis remains optimal. Thus, as long as 56 � 60 � 4 � c1 � 60 � 20 � 80, the current
basis remains optimal. If c1 	 56 or c1 � 80, the current basis is no longer optimal.

If the current basis remains optimal, then the values of the decision variables don’t
change because B�1b remains unchanged. The optimal z-value does change, however. To
illustrate this, suppose c1 � 70. Because 56 � 70 � 80, we know that the current basis
remains optimal. Thus, Dakota should still manufacture 2 desks (x1 � 2) and 8 chairs 
(x3 � 8). However, changing c1 to 70 changes z to z � 70x1 � 30x2 � 20x3. This changes
z to 70(2) � 20(8) � $300. Another way to see that z is now $300 is to note that we have
increased the revenue from each desk by 70 � 60 � $10. Dakota is making 2 desks, so
revenue should increase by 2(10) � $20, and new revenue � 280 � 20 � $300.

When the Current Basis Is No Longer Optimal

Recall that if c1 	 56 or c1 � 80, then the current basis is no longer optimal. Intuitively,
if the price of desks is decreased sufficiently (with all other prices held constant), desks
will no longer be worth making. Our analysis shows that this occurs if the price of desks
is decreased by more than $4. The reader should verify (see Problem 2 at the end of this
section) that if c1 	 56, x1 is no longer a basic variable in the new optimal solution. On
the other hand, if c1 � 80, desks have become profitable enough to make the current ba-
sis suboptimal; desks are now so attractive that we want to make more of them. To do
this, we must force another variable out of the basis. Suppose c1 � 100. Because 100 �
80, we know that the current basis is no longer optimal. How can we determine the new
optimal solution? Simply create the optimal tableau for c1 � 100 and proceed with the
simplex. If c1 � 100, then 
 � 100 � 60 � 40, and the new row 0 will have

cc�1 � 0, cc�2 � 5 � 1.25
 � 55, cc�3 � 0,

s1 coefficient in row 0 � 0

s2 coefficient in row 0 � 10 � 0.5
 � �10

s3 coefficient in row 0 � 10 � 1.5
 � 70

Right-hand side of row 0 � cBVB�1b � [0 �10 70] � � � 360

From (6), changing c1 does not change the constraints in the BV tableau. This means that
if c1 � 100, then the BV tableau is as given in Table 4. BV � {s1, x3, x1} is now subopti-

48

20

8
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†“If and only if ”
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mal. To find the new Dakota optimal solution, we enter s2 into the basis in row 2 (Table 5).
This is an optimal tableau. If c1 � 100, then the new optimal solution to the Dakota prob-
lem is z � 400, s1 � 16, s2 � 4, x1 � 4, x2 � 0, x3 � 0. Notice that increasing the prof-
itability of desks has caused Dakota to stop making chairs. The resources that were previ-
ously used to make the chairs are now used to make 4 � 2 � 2 extra desks.

In summary, if the objective function coefficient of a basic variable xj is changed, then
the current basis remains optimal if the coefficient of every variable in row 0 of the BV
tableau remains nonnegative. If any variable in row 0 has a negative coefficient, then the
current basis is no longer optimal.

Interpretation of the Objective Coefficient Ranges 
Block of the LINDO Output

To obtain a sensitivity report in LINDO, select Yes when asked (after solving LP) whether
you want a Range analysis. To obtain a sensitivity report in LINGO, go to Options and
select Range (after solving LP). If this does not work, go to Options, choose the General
Solver tab, and then go to Dual Computations and select the Ranges and Values option.

In the OBJ COEFFICIENT RANGES block of the LINDO (or LINGO) computer out-
put, we see the amount by which each variable’s objective function coefficient may be
changed before the current basis becomes suboptimal (assuming all other LP parameters
are held constant). Look at the LINDO output for the Dakota problem (Figure 4). For each
variable, the CURRENT COEF column gives the current value of the variable’s objective
function coefficient. For example, the objective function coefficient for DESKS is 60. The
ALLOWABLE INCREASE column gives the maximum amount by which the objective

–4  ≤  ∆  ≤  20  

∆  ≥

∆  ≥

∆  ≤  2020

–4 –4

20–
3

20–
3

F I G U R E  3
Determination of Range

of Values on c1 for
Which Current Basis

Remains Optimal

TA B L E  4
“Final” (Suboptimal) Tableau If c1 � 100

Basic Variable Ratio

z x1 � 1.55x2 � x3 � s1 � .10s2 � .70s3 � 360 z1 � 360
z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24 s1 � 24 12
z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8 x3 � 8 4*
z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2 None

TA B L E  5
Optimal Dakota Tableau If c1 � 100

Basic Variable

z x1 � 1.45x2 � 0.25x3 � s1 � s2 � .50s3 � 400 z1 � 400
z x1 � 1.22x2 � 0.25x3 � s1 � s2 � 1.4s3 � 16 s1 � 16
z x1 � 1.22x2 � 20.5x3 � s1 � s2 � 1.2s3 � 4 s2 � 4
z x1 � 0.75x2 � 0.25x3 � s1 � s2 � 0.5s3 � 4 x1 � 4
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6.5 Finding the Dual of an LP
Associated with any LP is another LP, called the dual. Knowing the relation between an
LP and its dual is vital to understanding advanced topics in linear and nonlinear pro-
gramming. This relation is important because it gives us interesting economic insights.
Knowledge of duality will also provide additional insights into sensitivity analysis.

In this section, we explain how to find the dual of any LP; in Section 6.6, we discuss
the economic interpretation of the dual; and in Sections 6.7–6.10, we discuss the relation
that exists between an LP and its dual.

When taking the dual of a given LP, we refer to the given LP as the primal. If the pri-
mal is a max problem, then the dual will be a min problem, and vice versa. For convenience,
we define the variables for the max problem to be z, x1, x2, . . . , xn and the variables for the
min problem to be w, y1, y2, . . . , ym. We begin by explaining how to find the dual of a max
problem in which all variables are required to be nonnegative and all constraints are � con-
straints (called a normal max problem). A normal max problem may be written as

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11x1 � a12x2 � ��� � cna1nxn � b1

s.t. a21x1 � a22x2 � ��� � cna2nxn � b2 (16)
a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�

s.t. am1x1 � am2x2 � ��� � amnxn � bm

xj � 0 ( j � 1, 2, . . . , n)

The dual of a normal max problem such as (16) is defined to be

min w � b1y1 � b2y2 � ��� � bmxm

s.t. a11y1 � a21y2 � ��� � am1ym � c1

a12y1 � a22y2 � ��� � am2ym � c2
(17)a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�

a1ny1 � a2ny2 � ��� � amnym � cn

yi � 0 (i � 1, 2, . . . , m)

A min problem such as (17) that has all � constraints and all variables nonnegative is
called a normal min problem. If the primal is a normal min problem such as (17), then
we define the dual of (17) to be (16).

Finding the Dual of a Normal Max or Min Problem

A tabular approach makes it easy to find the dual of an LP. If the primal is a normal max
problem, then it can be read across (Table 14); the dual is found by reading down. Simi-
larly, if the primal is a normal min problem, we find it by reading down; the dual is found

where 
b1 � 0 and 
b2 	 0. Let

r1 � �
U1




�

b1

b1
� and r2 � �

b
�

2 �


b
L
2

2
�

Show that if r1 � r2 � 1, the current basis remains optimal.
(Hint: You must show that

B�1� � � � �
Use the fact that

[b1�, b2�] � r1[U1, b2] � r2[b1, L2] � (1 � r1 � r2)[b1, b2]

to show this.)

0

0

b1�

b2�
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by reading across in the table. We illustrate the use of the table by finding the dual of the
Dakota problem and the dual of the diet problems. The Dakota problem is

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 1.6x2 � 1.5x3 � 48 (Lumber constraint)

s.t. 4x1 � 1.2x2 � 1.5x3 � 20 (Finishing constraint)

s.t. 2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

s.t. 2 � 2.5 � 0 .5x1, x2, x3 � 0

where

x1 � number of desks manufactured

x2 � number of tables manufactured

x3 � number of chairs manufactured

Using the format of Table 14, we read the Dakota problem across in Table 15. Then,
reading down, we find the Dakota dual to be

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60

s.t. 6y1 � 1.2y2 � 1.5y3 � 30

s.t. 6y1 � 1.5y2 � 0.5y3 � 20

s.t. � 1.5 � 0.5y1, y2, y3 � 0

The tabular method of finding the dual makes it clear that the ith dual constraint corre-
sponds to the ith primal variable xi. For example, the first dual constraint corresponds to
x1 (desks), because each number comes from the x1 (desk) column of the primal. Simi-

TA B L E  14
Finding the Dual of a Normal Max or Min Problem

max z

min w (x1 � 0) (x2 � 0) ��� (xn � 0)

x1 x2 xn

(y1 � 0) y1 a11 a12 ��� a1n �b1

(y2 � 0) y2 a21 a22 ��� a2n �b2

� � � � � �� � � � � �� � � � � �

(ym � 0) ym am1 am2 ��� amn �bm

�c1 �c2 �cn

TA B L E  15
Finding the Dual of the Dakota Problem

max z

min w (x1 � 0) (x2 � 0) (x3 � 0)

x1 x2 x3

(y1 � 0) y1 8 6.5 1.5 �48
(y2 � 0) y2 4 2.5 1.5 �20
(y3 � 0) y3 2 1.5 0.5 �88

�60 �30 �20



larly, the second dual constraint corresponds to x2 (tables), and the third dual constraint
corresponds to x3 (chairs). In a similar fashion, dual variable yi is associated with the ith
primal constraint. For example, y1 is associated with the first primal constraint (lumber
constraint), because each coefficient of y1 in the dual comes from the lumber constraint,
or the availability of lumber. The importance of these correspondences between the pri-
mal and the dual will become clear in Section 6.6.

We now find the dual of the diet problem. Because the diet problem is a min problem,
we follow the convention of using w to denote the objective function and y1, y2, y3, and
y4 for the variables. Then the diet problem may be written as

min w � 50y1 � 20y2 � 30y3 � 80y4

s.t. 400y1 � 200y2 � 150y3 � 500y4 � 500 (Calorie constraint)

s.t. 3y1 � 2y2 � 150y3 � 500y4 � 6 (Chocolate constraint)

s.t. 2y1 � 2y2 � 4y3 � 4y4 � 10 (Sugar constraint)

s.t. 2y1 � 4y2 � y3 � 5y4 � 8 (Fat constraint)

s.t. � � � y1, y2, y3, y4 � 0

where

y1 � number of brownies eaten daily

y2 � number of scoops of chocolate ice cream eaten daily

y3 � bottles of soda drunk daily

y4 � pieces of pineapple cheesecake eaten daily

The primal is a normal min problem, so we can read it down, and read its dual across, in
Table 16. We find that the dual of the diet problem is

max z � 500x1 � 6x2 � 10x3 � 8x4

s.t. 400x1 � 3x2 � 2x3 � 2x4 � 50

s.t. 200x1 � 2x2 � 2x3 � 4x4 � 20

s.t. 150x1 � 2x2 � 4x3 � x4 � 30

s.t. 500x1 � 2x2 � 4x3 � 5x4 � 80

s.t. 500 � 2 � 2 � 2x1, x2, x3, x4 � 0

As in the Dakota problem, we see that the ith dual constraint corresponds to the ith
primal variable. For example, the third dual constraint may be thought of as the soda con-
straint. Also, the ith dual variable corresponds to the ith primal constraint. For example,
x3 (the third dual variable) may be thought of as the dual sugar variable.
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TA B L E  16
Finding the Dual of the Diet Problem

max z

min w (x1 � 0) (x2 � 0) (x3 � 0) (x4 � 0)

x1 x2 x3 x4

( y1 � 0) y1 400 3 2 2 �50
( y2 � 0) y2 200 2 2 4 �20
( y3 � 0) y3 150 0 4 1 �30
( y4 � 0) y4 500 0 4 5 �80

�500 �6 �10 �8
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Finding the Dual of a Nonnormal LP

Unfortunately, many LPs are not normal max or min problems. For example,

max z � 2x1 � x2

s.t. x1 � x2 � 2

s.t. 2x1 � x2 � 3 (18)

s.t. x1 � x2 � 1

s.t. 2x1 � x1 � 0, x2 urs

is not a normal max problem because it has a � constraint, an equality constraint, and an
unrestricted-in-sign variable. As another example of a nonnormal LP, consider

min w � 2y1 � 4y2 � 6y3

s.t. y1 � 2y2 � y3 � 2

s.t. y1 � 2y2 � y3 � 1
(19)

s.t. 2y1 � 2y2 � y3 � 1

s.t. 2y1 � y2 � y3 � 3

s.t. y1 urs, y2, y3 � 0

This LP is not a normal min problem because it contains an equality constraint, a � con-
straint, and an unrestricted-in-sign variable.

Fortunately, an LP can be transformed into normal form (either (16) or (17)). To place
a max problem into normal form, we proceed as follows:

Step 1 Multiply each � constraint by �1, converting it into a � constraint. For 
example, in (18), 2x1 � x2 � 3 would be transformed into �2x1 � x2 � �3.

Step 2 Replace each equality constraint by two inequality constraints (a � constraint and
a � constraint). Then convert the � constraint to a � constraint. For example, in (18),
we would replace x1 � x2 � 2 by the two inequalities x1 � x2 � 2 and x1 � x2 � 2. Then
we would convert x1 � x2 � 2 to �x1 � x2 � �2. The net result is that x1 � x2 � 2 is
replaced by the two inequalities x1 � x2 � 2 and �x1 � x2 � �2.

Step 3 As in Section 4.14, replace each urs variable xi by xi � x� � xi�, where xi� � 0
and xi� � 0. In (18), we would replace x2 by x�2 � x�2.

After these transformations are complete, (18) has been transformed into the following
(equivalent) LP:

max z � 2x1 � x�2 � x�2

s.t. x1 � x�2 � x�2 � 2

s.t. �x1 � x�2 � x�2 � �2
(18�)

s.t. �2x1 � x�2 � x�2 � �3

s.t. x1 � x�2 � x�2 � 1

s.t. �2 � � x1, x�2, x�2 � 0

Because (18�) is a normal max problem, we could use (16) and (17) to find the dual of
(18�).

If the primal is not a normal min problem, then we can transform it into a normal min
problem as follows:
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Step 1 Convert each � constraint into a � constraint by multiplying through by �1. For
example, in (19), 2y1 � y2 � 3 is transformed into �2y1 � y2 � �3.

Step 2 Replace each equality constraint by a � constraint and a � constraint. Then trans-
form the � constraint into a � constraint. For example, in (19), the constraint y2 � y3 �
1 is equivalent to y2 � y3 � 1 and y2 � y3 � 1. Transforming y2 � y3 � 1 into 
�y2 � y3 � �1, we see that we can replace the constraint y2 � y3 � 1 by the two con-
straints y2 � y3 � 1 and �y2 � y3 � �1.

Step 3 Replace any urs variable yi by yi � yi� � yi�, where yi� � 0 and yi� � 0. Applying
these steps to (19) yields the following standard min problem:

min w � 2y�1 � 2y�1 � 4y2 � 6y3

s.t. y�1 � 2y�1 � 2y2 � y3 � 2

s.t. 2y�1 � 2y�1 � 2y2 � y3 � 1

s.t. 2y�1 � 2y�1 � y2 � y3 � 1 (19�)

s.t. 2y�1 � 2y�1 � y2 � 6y3 � �1

s.t. �2y�1 � 2y�1 � y2 � 6y3 � �3

s.t. �2 � 2 � 2 � 2y�1, y�1, y2, y3 � 0

Because (19�) is a normal min problem in standard form, we may use (16) and (17) to
find its dual.

We can find the dual of a nonnormal LP without going through the transformations
that we have described by using the following rules.†

Finding the Dual of a Nonnormal Max Problem

Step 1 Fill in Table 14 so that the primal can be read across.

Step 2 After making the following changes, the dual can be read down in the usual fash-
ion: (a) If the ith primal constraint is a � constraint, then the corresponding dual variable
yi must satisfy yi � 0. (b) If the ith primal constraint is an equality constraint, then the
dual variable yi is now unrestricted in sign. (c) If the ith primal variable is urs, then the
ith dual constraint will be an equality constraint.

When this method is applied to (18), the Table 14 format yields Table 17. We note with
an asterisk (*) the places where the rules must be used to determine part of the dual. For
example, x2 urs causes the second dual constraint to be an equality constraint. Also, the
first primal constraint being an equality constraint makes y1 urs, and the second primal
constraint being a � constraint makes y2 � 0. Filling in the missing information across
from the appropriate asterisk yields Table18. Reading the dual down, we obtain

min w � 2y1 � 3y2 � y3

s.t. y1 � 2y2 � y3 � 2

s.t. y1 � y2 � y3 � 1

y1 urs, y2 � 0, y3 � 0

In Section 6.8, we give an intuitive explanation of why an equality constraint yields an
unrestricted-in-sign dual variable and why a � constraint yields a negative dual variable.

We can use the following rules to take the dual of a nonnormal min problem.

†In Problems 5 and 6 at the end of this section, we show that these rules are consistent with taking the dual
of the transformed LP via (16) and (17).



Finding the Dual of a Nonnormal Min Problem

Step 1 Write out the primal so it can be read down in Table 14.

Step 2 Except for the following changes, the dual can be read across the table: (a) If the
ith primal constraint is a � constraint, then the corresponding dual variable xi must sat-
isfy xi � 0. (b) If the ith primal constraint is an equality constraint, then the correspond-
ing dual variable xi will be urs. (c) If the ith primal variable yi is urs, then the ith dual
constraint is an equality constraint.

When this method is applied to (19), we get Table 19. Asterisks (*) show where the new
rules must be used to determine parts of the dual. Because y1 is urs, the first dual con-
straint is an equality. The third primal constraint is an equality, so dual variable x3 is urs.
Finally, because the fourth primal constraint is a � constraint, the fourth dual variable x4

must satisfy x4 � 0. We can now complete the table (see Table 20). Reading the dual
across, we obtain
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TA B L E  19
Finding the Dual of LP (19)

max z

min w (x1 � 0) (x2 � 0)

x1 x2 x3 x4

(y1 urs)* y1 1 �1 0 2 �2
(y2 � 0) y2 2 �0 1 1 �4
(y3 � 0) y3 1 �1 1 0 �6

�2 �1 �1* �3*

TA B L E  17
Finding the Dual of LP (18)

max z

min w (x1 � 0) (x2 urs)*

x1 x2

y1 1 �1 �2*
y2 2 �1 �3*

(y3 � 0) y3 1 �1 �1*
�2 �1

TA B L E  18
Finding the Dual of LP (18) (Continued)

max z

min w (x1 � 0) (x2 urs)

x1 x2

(y1 urs) y1 1 �1 �2
(y2 � 0) y2 2 �1 �3
(y3 � 0) y3 1 �1 �1

�2 �1



max z � 2x1 � x2 � x3 � 3x4

s.t. x1 � x2 � x3 � 2x4 � 2

s.t. 2x1 � x2 � x3 � x4 � 4

s.t. 2x1 � x2 � x3 � 2x4 � 6

x1, x2 � 0, x3 urs, x4 � 0

The reader may verify that with these rules, the dual of the dual is always the primal.
This is easily seen from the Table 14 format, because when you take the dual of the dual
you are changing the LP back to its original position.

P R O B L E M S
Group A
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TA B L E  20
Finding the Dual of LP (19) (Continued)

max z

min w (x1 � 0) (x2 � 0) (x3 � urs) (x4 � 0)

x1 x2 x3 x4

(y1 urs) y1 1 �1 0 2 �2
(y2 � 0) y2 2 �0 1 1 �4
(y3 � 0) y3 1 �1 1 0 �6

�2 �1 �1 �3

Find the duals of the following LPs:

1 max z � 2x1 � x2

s.t. � x1 � x2 � 1
s.t. x1 � x2 � 3
s.t. x1 � 2x2 � 4
s.t. � 2x1, x2 � 0

2 min w � y1 � y2

s.t. 2y1 � y2 � 4
s.t. y1 � y2 � 1
s.t. y1 � 2y2 � 3
s.t. � 2y1, y2 � 0

3 max z � 4x1 � x2 � 2x3

s.t. x1 � x2 � x3 � 5
s.t. 2x1 � x2 � x3 � 7
s.t. 2x1 � 2x2 � x3 � 6
s.t. x1 � 2x2 � x3 � 4

x1 � 0, x2, x3 urs

4 min w � 4y1 � 2y2 � y3

s.t. y1 � 2y2 � 2y3 � 6
s.t. y1 � y2 � 2y3 � 8

y1, y2 � 0, y3 urs

Group B

5 This problem shows why the dual variable for an equality
constraint should be urs.

a Use the rules given in the text to find the dual of
max z � x1 � 2x2

s.t. 3x1 � x2 � 6
s.t. 2x1 � x2 � 5

x1, x2 � 0
b Now transform the LP in part (a) to the normal form.
Using (16) and (17), take the dual of the transformed
LP. Use y2� and y2� as the dual variables for the two pri-
mal constraints derived from 2x1 � x2 � 5.
c Make the substitution y2 � y2� � y2� in the part (b)
answer. Now show that the two duals obtained in parts
(a) and (b) are equivalent.

6 This problem shows why a dual variable yi corresponding
to a � constraint in a max problem must satisfy yi � 0.

a Using the rules given in the text, find the dual of
max z � 3x1 � x2

s.t. x1 � x2 � 1
s.t. �x1 � x2 � 2

s.t. �x1, x2 � 0
b Transform the LP of part (a) into a normal max
problem. Now use (16) and (17) to find the dual of the
transformed LP. Let y�2 be the dual variable correspond-
ing to the second primal constraint.
c Show that, defining yy�2 � �y2, the dual in part (a) is
equivalent to the dual in part (b).
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6.6 Economic Interpretation of the Dual Problem
Interpreting the Dual of a Max Problem

The dual of the Dakota problem is

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60 (Desk constraint)

s.t. 6y1 � 1.2y2 � 1.5y3 � 30 (Table constraint) (20)

s.t. y1 � 1.5y2 � 0.5y3 � 20 (Chair constraint)

s.t. 6 � 1.5 �y1, y2, y3 � 0

The first dual constraint is associated with desks, the second with tables, and the third
with chairs. Also, y1 is associated with lumber, y2 with finishing hours, and y3 with car-
pentry hours. The relevant information about the Dakota problem is shown in Table 21.

We are now ready to interpret the Dakota dual (20). Suppose an entrepreneur wants to
purchase all of Dakota’s resources. Then the entrepreneur must determine the price he or
she is willing to pay for a unit of each of Dakota’s resources. With this in mind, we define

y1 � price paid for 1 board ft of lumber

y2 � price paid for 1 finishing hour

y3 � price paid for 1 carpentry hour

The resource prices y1, y2, and y3 should be determined by solving the Dakota dual (20).
The total price that should be paid for these resources is 48y1 � 20y2 � 8y3. Because the
cost of purchasing the resources is to be minimized,

min w � 48y1 � 20 y2 � 8y3

is the objective function for the Dakota dual.
In setting resource prices, what constraints does the entrepreneur face? Resource prices

must be set high enough to induce Dakota to sell. For example, the entrepreneur must offer
Dakota at least $60 for a combination of resources that includes 8 board feet of lumber, 4
finishing hours, and 2 carpentry hours, because Dakota could, if it desires, use these resources
to produce a desk that can be sold for $60. The entrepreneur is offering 8y1 � 4y2 � 2y3 for
the resources used to produce a desk, so he or she must choose y1, y2, and y3 to satisfy

8y1 � 4y2 � 2y3 � 60

But this is just the first (or desk) constraint of the Dakota dual. Similar reasoning shows
that at least $30 must be paid for the resources used to produce a table (6 board feet of lum-
ber, 2 finishing hours, and 1.5 carpentry hours). This means that y1, y2, and y3 must satisfy

6y1 � 2y2 � 1.5y3 � 30

TA B L E  21
Relevant Information for Dakota Problem

Resource/Product Amount of
Resource

Resource Desk Table Chair Available

Lumber (board ft) 68 36.5 21.5 48
Finishing (hours) 64 32.5 21.5 20
Carpentry (hours) 62 31.5 20.5 08
Selling price ($) 60 30.5 20.5
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This is the second (or table) constraint of the Dakota dual.
Similarly, the third (or chair) dual constraint,

y1 � 1.5y2 � 0.5y3 � 20

states that at least $20 (the price of a chair) must be paid for the resources needed to pro-
duce a chair (1 board foot of lumber, 1.5 finishing hours, and 0.5 carpentry hour). The
sign restrictions y1 � 0, y2 � 0, and y3 � 0 must also hold. Putting everything together,
we see that the solution to the dual of the Dakota problem does yield prices for lumber,
finishing hours, and carpentry hours. The preceding discussion also shows that the ith dual
variable does indeed correspond in a natural way to the ith primal constraint.

In summary, when the primal is a normal max problem, the dual variables are related
to the value of the resources available to the decision maker. For this reason, the dual vari-
ables are often referred to as resource shadow prices. A more thorough discussion of
shadow prices is given in Section 6.8.

Interpreting the Dual of a Min Problem

To interpret the dual of a min problem, we consider the dual of the diet problem of Sec-
tion 3.4. In Section 6.5, we found that the diet problem dual was

max z � 500x1 � 6x2 � 10x3 � 8x4

s.t. 400x1 � 3x2 � 2x3 � 2x4 � 50 (Brownie constraint)

s.t. 200x1 � 2x2 � 2x3 � 4x4 � 20 (Ice cream constraint)

s.t. 150x1 � 2x2 � 4x3 � x4 � 30 (Soda constraint)
(21)

s.t. 500x1 � 2x1 � 4x3 � 5x4 � 80 (Cheesecake constraint)

s.t. 500 �2 �2 �4x1, x2, x3, x4 � 0

The data for the diet problem are shown in Table 22. To interpret (21), suppose Candice
is a “nutrient” salesperson who sells calories, chocolate, sugar, and fat. She wants to en-
sure that a dieter will meet all of his or her daily requirements by purchasing calories,
sugar, fat, and chocolate. Then Candice must determine

x1 � price per calorie to charge dieter

x2 � price per ounce of chocolate to charge dieter

x3 � price per ounce of sugar to charge dieter

x4 � price per ounce of fat to charge dieter

Candice wants to maximize her revenue from selling the dieter the daily ration of required
nutrients. Because she will receive 500x1 � 6x2 � 10x3 � 8x4 cents in revenue from the
dieter, her objective is to

max z � 500x1 � 6x2 � 10x3 � 8x4

TA B L E  22
Relevant Information for Diet Problem

Chocolate Sugar Fat Price
Calories (Ounces) (Ounces) (Ounces) (Cents)

Brownie 400 3 2 2 50
Ice cream 200 2 2 4 20
Soda 150 0 4 1 30
Cheesecake 500 0 4 5 80
Requirements 500 6 10 8



304 C H A P T E R 6 Sensitivity Analysis and Duality

This is the objective function for the dual of the diet problem. But in setting nutrient
prices, Candice must set prices low enough so that it will be in the dieter’s economic in-
terest to purchase all nutrients from her. For example, by purchasing a brownie for 50¢,
the dieter can obtain 400 calories, 3 oz of chocolate, 2 oz of sugar, and 2 oz of fat. So
Candice cannot charge more than 50¢ for this combination of nutrients. This leads to the
following (brownie) constraint:

400x1 � 3x2 � 2x3 � 2x4 � 50

the first constraint in the diet problem dual. Similar reasoning yields the second dual (ice
cream) constraint, the third (soda constraint), and the fourth (cheesecake constraint).
Again, the sign restrictions x1 � 0, x2 � 0, x3 � 0, and x4 � 0 must be satisfied.

Our discussion shows that the optimal value of xi may be interpreted as a price for 1
unit of the nutrient associated with the ith dual constraint. Thus, x1 would be the price for
1 calorie, x2 would be the price for 1 oz of chocolate, and so on. Again, we see that it is
reasonable to associate the ith dual variable (xi) and the ith primal constraint.

In summary, we have shown that when the primal is a normal max problem or a nor-
mal min problem, the dual problem has an intuitive economic interpretation. In Section
6.8, we explain more about the proper interpretation of the dual variables.

P R O B L E M
Group A

1 Find the dual of Example 3 in Chapter 3 (an auto
company) and give an economic interpretation of the dual
problem.

2 Find the dual of Example 2 in Chapter 3 (Dorian Auto)
and give an economic interpretation of the dual problem.

6.7 The Dual Theorem and Its Consequences
In this section, we discuss one of the most important results in linear programming: the
Dual Theorem. In essence, the Dual Theorem states that the primal and dual have equal
optimal objective function values (if the problems have optimal solutions). This result is
interesting in its own right, but we will see that in proving the Dual Theorem, we gain
many important insights into linear programming.

To simplify the exposition, we assume that the primal is a normal max problem with m
constraints and n variables. Then the dual problem will be a normal min problem with m
variables and n constraints. In this case, the primal and the dual may be written as follows:

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11 x1 � a12x2 � ��� � a1n xn � b1

s.t. a21 x1 � a22x2 � ��� � a2n xn � b2

Primal Problem � � � � (22)
s.t. ai1x1 � ai2x2 � ��� � ainxn � bi

�x1 � a2�x2 � ��� � a 2�xn �

am1x1 � am2x2 � ��� � amnxn � bm

xj � 0 ( j � 1, 2, . . . , n)



From the optimal primal tableau, we find that the optimal dual solution is z � 6, x1 � 3,
x2 � 0, x3 � �1.

P R O B L E M S
Group A
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1 The following questions refer to the Giapetto problem
(see Problem 7 of Section 6.3).

a Find the dual of the Giapetto problem.
b Use the optimal tableau of the Giapetto problem to
determine the optimal dual solution.
c Verify that the Dual Theorem holds in this instance.

2 Consider the following LP:
max z � �2x1 � x2 � x3

s.t. x1 � x2 � x3 � 3
s.t. x1 � x2 � x3 � 2
s.t. x1 � x2 � x3 � 1

s.t. � �x1, x2, x3 � 0
a Find the dual of this LP.
b After adding a slack variable s1, subtracting an ex-
cess variable e2, and adding artificial variables a2 and
a3, row 0 of the LP’s optimal tableau is found to be

z � 4x1 � e2 � (M � 1)a2 � (M � 2)a3 � 0
Find the optimal solution to the dual of this LP.

3 For the following LP,
max z � �x1 � 5x2

s.t. 2x1 � 2x2 � 0.5
s.t. �x1 � 3x2 � 0.5
s.t. �� x1, x2 � 0

row 0 of the optimal tableau is z � 0.4s1 � 1.4s2 � ? De-
termine the optimal z-value for the given LP.

4 The following questions refer to the Bevco problem of
Section 4.10.

a Find the dual of the Bevco problem.
b Use the optimal tableau for the Bevco problem that is
given in Section 4.10 to find the optimal solution to the

dual. Verify that the Dual Theorem holds in this instance.

5 Consider the following linear programming problem:
max z � 4x1 � x2

s.t. 3x1 � 2x2 � 6
s.t. 6x1 � 3x2 � 10

s.t. 6 � 3x1, x2 � 0
Suppose that in solving this problem, row 0 of the optimal
tableau is found to be z � 2x2 � s2 � �

2
3
0
�. Use the Dual The-

orem to prove that the computations must be incorrect.

6 Show that (for a max problem) if the ith primal constraint
is a � constraint, then the optimal value of the ith dual
variable may be written as (coefficient of ai in optimal 
row 0) � M.

Group B

7 In this problem, we use weak duality to prove Lemma 3.
a Show that Lemma 3 is equivalent to the following:
If the dual is feasible, then the primal is bounded. (Hint:
Do you remember, from plane geometry, what the con-
trapositive is?)
b Use weak duality to show the validity of the form of
Lemma 3 given in part (a). (Hint: If the dual is feasible,
then there must be a dual feasible point having a 
w-value of, say, wo. Now use weak duality to show that
the primal is bounded.)

8 Following along the lines of Problem 7, use weak duality
to prove Lemma 4.

9 Use the information given in Problem 8 of Section 6.3
to determine the dual of the Dorian Auto problem and its
optimal solution.

6.8 Shadow Prices
We now return to the concept of shadow price that was discussed in Section 6.1. A more
formal definition follows.

D E F I N I T I O N ■ The shadow price of the ith constraint is the amount by which the optimal 
z-value is improved (increased in a max problem and decreased in a min problem)
if we increase bi by 1 (from bi to bi � 1).†

†This assumes that after the right-hand side of Constraint i has been changed to bi � 1, the current basis re-
mains optimal.



By using the Dual Theorem, we can easily determine the shadow price of the ith con-
straint. To illustrate, we find the shadow price of the second constraint (finishing hours)
of the Dakota problem. Let cBVB�1 � [ y1 y2 y3] � [0 10 10] be the optimal solu-
tion to the dual of the max problem. From the Dual Theorem, we know that

Optimal z-value when rhs of constraints are (b1 � 48, b2 � 20, b3 � 8)

� 48y1 � 20y2 � 8y3 (31)

What happens to the optimal z-value for the Dakota problem if b2 (currently 20 fin-
ishing hours) is increased by 1 unit (to 21 hours)? We know that changing a right-hand
side may cause the current basis to no longer be optimal (see Section 6.3). For the mo-
ment, however, we assume that the current basis remains optimal when we increase b2 by
1. Then cBV and B�1 remain unchanged, so the optimal solution to the dual of the Dakota
problem remains unchanged.

We next find

Optimal z-value when rhs of finishing constraint is 21 � 48y1 � 21y2 � 8y3 (35)

Subtracting (34) from (35) yields

Change in optimal z-value if finishing hours are increased by 1

� shadow price for finishing constraint 2 (36)

� y2 � 10

This example shows that the shadow price of the ith constraint of a max problem is the
optimal value of the ith dual variable. The shadow prices are the dual variables, so we
know that the shadow price for a � constraint will be nonnegative; for a � constraint,
nonpositive; and for an equality constraint, unrestricted in sign. The examples discussed
later in this section give intuitive justifications for these sign conventions.

Similar reasoning can be used to show that if (in a maximization problem) the right-
hand side of the ith constraint is increased by an amount 
bi, then (assuming the current
basis remains optimal) the new optimal z-value may be found from

New optimal z-value � old optimal z-value � 
bi(Constraint i shadow price) (37)

For a minimization problem, the shadow price of the ith constraint is the amount by
which a unit increase in the right-hand side improves, or decreases, the optimal z-value
(assuming that the current basis remains optimal). It can be shown that the shadow price
of the ith constraint of a min problem � �(optimal value of the ith dual variable). If the
right-hand side is increased by an amount 
bi, then (assuming the current basis remains
optimal) the new optimal z-value may be found from

New optimal z-value � old optimal z-value � 
bi(Constraint i shadow price) (37�)

The following three examples should clarify the shadow price concept.

For the Dakota problem:

1 Find and interpret the shadow prices

2 If 18 finishing hours were available, what would be Dakota’s revenue? (It can be
shown by the methods of Section 6.3 that if 16 � finishing hours � 24, the current ba-
sis remains optimal.)

3 If 9 carpentry hours were available, what would be Dakota’s revenue? (For �
2
3
0
� � car-

pentry hours � 10, the current basis remains optimal.)
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Shadow Prices for Normal Max ProblemE X A M P L E  1 1
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4 If 30 board feet of lumber were available, what would be Dakota’s revenue? (For 
24 � lumber � �, the current basis remains optimal.)

5 If 30 carpentry hours were available, why couldn’t the shadow price for the carpentry
constraint be used to determine the new z-value?

Solution 1 In Section 6.7, we found the optimal solution to the Dakota dual to be y1 � 0, y2 �
10, y3 � 10. Thus, the shadow price for the lumber constraint is 0; for the finishing con-
straint, 10; and for the carpentry constraint, 10. The fact that the lumber constraint has a
shadow price of 0 means that increasing the amount of available lumber by 1 board foot
(or any amount) will not increase revenue. This is reasonable because we are currently us-
ing only 24 of the available 48 board feet of lumber, so adding any more will not do
Dakota any good. Dakota’s revenue would increase by $10 if 1 more finishing hour were
available. Similarly, 1 more carpentry hour would increase Dakota’s revenue by $10. In
this problem, the shadow price of the ith constraint may be thought of as the maximum
amount that the company would pay for an extra unit of the resource associated with the
ith constraint. For example, an extra carpentry hour would raise revenue by y3 � $10 (see
Example 12 for a max problem in which this interpretation is invalid). Thus, Dakota could
pay up to $10 for an extra carpentry hour and still be better off. Similarly, the company
would be willing to pay nothing ($0) for an extra board foot of lumber and up to $10 for
an extra finishing hour. To answer questions 2–4, we apply (37), using the fact that the
old z-value � 280.

2 y2 � 10, 
b2 � 18 � 20 � �2. The current basis is still optimal because 16 � 18
� 24. Then (37) yields (new revenue) � 280 � 10(�2) � $260.

3 y3 � 10, 
b3 � 9 � 8 � 1. Because ��
2
3
0
� � 9 � 10, the current basis remains optimal.

Then (37) yields (new revenue) � 280 � 10(1) � $290.

4 y1 � 0, 
b1 � 30 � 48 � �18. Because 24 � 30 � �, the current basis is still op-
timal. Then (37) yields (new revenue) � 280 � 0(�18) � $280.

5 If b3 � 30, the current basis is no longer optimal, because 30 � 10. This means that
BV (and therefore cBVB�1) changes, and we cannot use the current set of shadow prices
to determine the new revenue level.

Intuitive Explanation of the Sign of Shadow Prices

We can now give an intuitive explanation of why (in a max problem) the shadow price of
a � constraint will always be nonnegative. Consider the following situation: We are given
two LP max problems (LP 1 and LP 2) that have the same objective functions. Suppose
that every point that is feasible for LP 1 is also feasible for LP 2. This means that LP 2’s
feasible region contains all the points in LP 1’s feasible region and possibly some other
points. Then the optimal z-value for LP 2 must be at least as large as the optimal z-value
for LP 1. To see this, suppose that point x� (with z-value z�) is optimal for LP 1. Because
x� is also feasible for LP 2 (which has the same objective function as LP 1), LP 2 can at-
tain a z-value of z� (by using the feasible point x�). It is also possible that by using one of
the points feasible for only LP 2 (and not for LP 1), LP 2 might do better than z�. In short,
adding points to the feasible region of a max problem cannot decrease the optimal z-value.

We can use this observation to show why a � constraint must have a nonnegative
shadow price. For the Dakota problem, if we increase the right-hand side of the carpen-
try constraint by 1 (from 8 to 9), we see that all points that were originally feasible re-



main feasible, and some new points (which use � 8 and � 9 carpentry hours) may be
feasible. Thus, the optimal z-value cannot decrease, and the shadow price for the carpen-
try constraint must be nonnegative.

The purpose of the following example is to show that (contrary to what many books
say) the shadow price of a � constraint is not always the maximum price you would be
willing to pay for an additional unit of a resource.

Leatherco manufactures belts and shoes. A belt requires 2 square yards of leather and 1
hour of skilled labor. A pair of shoes requires 3 sq yd of leather and 2 hours of skilled la-
bor. As many as 25 sq yd of leather and 15 hours of skilled labor can be purchased at a
price of $5/sq yd of leather and $10/hour of skilled labor. A belt sells for $23, and a pair
of shoes sells for $40. Leatherco wants to maximize profits (revenues � costs). Formu-
late an LP that can be used to maximize Leatherco’s profits. Then find and interpret the
shadow prices for this LP.

Solution Define

x1 � number of belts produced

x2 � number of pairs of shoes produced

After noting that

Cost/belt � 2(5) � 1(10) � $20

Cost/pair of shoes � 3(5) � 2(10) � $35

we find that Leatherco’s objective function is

max z � (23 � 20)x1 � (40 � 35)x2 � 3x1 � 5x2

Leatherco faces the following two constraints:

Constraint 1 Leatherco can use at most 25 sq yd of leather.

Constraint 2 Leatherco can use at most 15 hours of skilled labor.

Constraint 1 is expressed by

2x1 � 3x2 � 25 (Leather constraint)

while Constraint 2 is expressed by

x1 � 2x2 � 15 (Skilled-labor constraint)

After adding the sign restrictions x1 � 0 and x2 � 0, we obtain the following LP:

max z � 3x1 � 5x2

s.t. 2x1 � 3x2 � 25 (Leather constraint)

s.t. x1 � 2x2 � 15 (Skilled-labor constraint)

s.t. � 2x1, x2 � 0

After adding slack variables s1 and s2 to the leather and skilled-labor constraints, respec-
tively, we obtain the optimal tableau shown in Table 27. Thus, the optimal solution to
Leatherco’s problem is z � 40, x1 � 5, x2 � 5. The shadow prices are

y1 � leather shadow price � coefficient of s1 in optimal row  0 � 1

y2 � skilled-labor shadow price � coefficient of s2 in optimal row 0 � 1
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The meaning of the leather shadow price is that if one more square yard of leather were
available, then Leatherco’s objective function (profits) would increase by $1. Let’s look fur-
ther at what happens if an additional square yard of leather is available. Because s1 is non-
basic, the extra square yard of leather will be purchased. Also, because s2 is nonbasic, we
will still use all available labor. This means that the $1 increase in profits includes the cost
of purchasing an extra square yard of leather. If the availability of an extra square yard of
leather increases profits by $1, then it must be increasing revenue by 1 � 5 � $6. Thus, the
maximum amount Leatherco should pay for an extra square yard of leather is $6 (not $1).

Another way to see this is as follows: If we purchase another square yard of leather at
the current price of $5, profits increase by y1 � $1. If we purchase another square yard
of leather at a price of $6 � $5 � $1, then profits increase by $1 � $1 � $0. Thus, the
most Leatherco would be willing to pay for an extra square yard of leather is $6.

Similarly, the most Leatherco would be willing to pay for an extra hour of labor is y2 �
(cost of an extra hour of skilled labor) � 1 � 10 � $11. In this problem, we see that the
shadow price for a resource represents the premium over and above the cost of the resource
that Leatherco would be willing to pay for an extra unit of resource.

The two preceding examples show that we must be careful when interpreting the
shadow price of a � constraint. Remember that the shadow price for a constraint in a max
problem is the amount by which the objective function increases if the right-hand side is
increased by 1.

The following example illustrates the interpretation of the shadow prices of � and
equality constraints.

Steelco has received an order for 100 tons of steel. The order must contain at least 3.5
tons of nickel, at most 3 tons of carbon, and exactly 4 tons of manganese. Steelco receives
$20/ton for the order. To fill the order, Steelco can combine four alloys, whose chemical
composition is given in Table 28. Steelco wants to maximize the profit (revenues � costs)
obtained from filling the order. Formulate the appropriate LP. Also find and interpret the
shadow prices for each constraint.

Solution After we define xi � number of tons of alloy i used to fill the order, Steelco’s LP is seen
to be

max z � (20 � 12)x1 � (20 � 10)x2 � (20 � 8)x3 � (20 � 6)x4

s.t. 0.06x1 � 0.03x2 � 0.02x3 � 0.01x4 � 3.5 (Nickel constraint)

s.t. 0.03x1 � 0.02x2 � 0.05x3 � 0.06x4 � 3.5 (Carbon constraint)

s.t. 0.08x1 � 0.03x2 � 0.02x3 � 0.01x4 � 4.5 (Manganese constraint)

s.t. 0.08x1 � 0.03x2 � 0.02x3 � 0.01x4 � 100. (Order size � 100 tons)

s.t. 0.08 � 0.03 �0.02 �0.02x1, x2, x3, x4 � 0
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Shadow Prices for � and � ConstraintsE X A M P L E  1 3

TA B L E  27
Optimal Tableau for Leatherco

Basic
Variable

z x1 x2 � 2s1 � 3s2 � 40 z1 � 40
z x1 x2 � 2s1 � 3s2 � 5 x1 � 5
z x1 x2 � 2s1 � 2s2 � 5 x2 � 5



After adding a slack variable s2, subtracting an excess variable e1, and adding artificial
variables a1, a3, and a4, the following optimal solution is obtained: z � 1,000, s2 � 0.25,
x1 � 25, x2 � 62.5, x4 � 12.5, e1 � 0, x3 � 0. The optimal row 0 is

z � 400e1 � (M � 400)a1 � (M � 200)a3 � (M � 16)a4 � 1,000

Using (31), (31�), and (31�), we obtain

Shadow price of nickel constraint � �(coefficient of e1 in optimal row 0)

Shadow price of nickel constraint � �400

Shadow price of carbon constraint � coefficient of s2 in optimal row 0

Shadow price of carbon constraint � 0

Shadow price of manganese constraint � (coefficient of a3 in optimal row 0) � M

Shadow price of manganese constraint � 200

Shadow price of order size constraint � (coefficient of a4 in optimal row 0) � M

Shadow price of order size constraint � 16

By the sensitivity analysis procedures of Section 6.3, it can be shown that the current ba-
sis remains optimal if 3.46 � b1 � 3.6. As long as the nickel requirement is in this range,
increasing the nickel requirement by an amount 
b1 will increase Steelco’s profits by
�400 
b1. For example, increasing the nickel requirement to 3.55 tons (
b1 � 0.05)
would “increase” (actually decrease) profits by �400(0.05) � $20. The nickel constraint
has a negative shadow price because increasing the right-hand side of the nickel constraint
makes it harder to satisfy the nickel constraint. In fact, an increase in the nickel require-
ment forces Steelco to use more of the expensive type 1 alloy. This raises costs and low-
ers profits. As we have already seen, the shadow price of a � constraint (in a max prob-
lem) will always be nonpositive, because increasing the right-hand side of a � constraint
eliminates points from the feasible region. Thus, the optimal z-value must decrease or re-
main unchanged.

By the Section 6.3 sensitivity analysis procedures, for 2.75 � b2 � �, the current ba-
sis remains optimal. As stated before, the carbon constraint has a zero shadow price. This
means that if we increase Steelco’s carbon requirement, Steelco’s profit will not change.
Intuitively, this is because our present optimal solution contains only 2.75 	 3 tons of car-
bon. Thus, relaxing the carbon requirement won’t enable Steelco to reduce costs, so
Steelco’s profit will remain unchanged.

By the sensitivity analysis procedures, the current basis remains optimal if 3.83 �
b3 � 4.07. The shadow price of the third (manganese) constraint is 200, so we know that
as long as the manganese requirement remains in the given range, increasing it by an
amount of 
b3 will increase profit by 200
b3. For example, if the manganese requirement
were 4.05 tons (
b3 � 0.05), then profits would increase by (0.05)200 � $10.
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TA B L E  28
Relevant Information for Steelco

Alloy (%)

Cement 1 2 3 4

Nickel 6 3 2 1
Carbon 3 2 5 6
Manganese 8 3 2 1

Cost/ton ($) 12 10 8 6
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By the sensitivity analysis procedures, the current basis remains optimal if 91.67 �
b4 � 103.12. Because the shadow price of the fourth (order size) constraint is 16, in-
creasing the order size by 
b4 tons (with nickel, carbon, and manganese requirements un-
changed) would increase profits by 16
b4. For example, the profit from a 103-ton order
that required � 3.5 tons of nickel, � 3 tons of carbon, and exactly 4 tons of manganese
would be 1,000 � 3(16) � $1,048.

In this problem, both equality constraints had positive shadow prices. In general, we
know that it is possible for an equality constraint’s dual variable (and shadow price) to be
negative. If this occurs, then the equality constraint will have a negative shadow price. To
illustrate this possibility, suppose that Steelco’s customer required exactly 4.5 tons of man-
ganese in the order. Because 4.5 � 4.07, the current basis is no longer optimal. If we
solve Steelco’s LP again, it can be shown that the shadow price for the manganese con-
straint has changed to �54.55. This means that an increase in the manganese requirement
will decrease Steelco’s profits.

Interpretation of the Dual Prices Column 
of the LINDO Output

For a max problem, LINDO gives the values of the shadow prices in the DUAL PRICES
column of the output. The dual price for row i � 1 on the LINDO output is the shadow
price for the ith constraint and the optimal value for the ith dual variable. Thus, in Figure
4, we see that for the Dakota problem,

y1 � shadow price for lumber constraint � row 2 dual price � 0

y2 � shadow price for finishing constraint � row 3 dual price � 10

y3 � shadow price for carpentry constraint � row 4 dual price � 10

For a maximization problem, the vector cBVB�1 (needed for pricing out new activities)
is the same as the vector of dual prices given in the LINDO output. For the Dakota prob-
lem, we would price out new activities using cBVB�1 � [0 10 10].

For a minimization problem, the entry in the DUAL PRICE column for any constraint
is the shadow price. Thus, from the LINDO printout in Figure 6, we find that the shadow
prices for the constraints in the diet problem are as follows: calorie � 0; chocolate �
�2.5¢; sugar � �7.5¢; and fat � 0. This implies that

1 Increasing the calorie requirement by 1 will leave the cost of the optimal diet un-
changed.

2 Increasing the chocolate requirement by 1 oz will decrease the cost of the optimal diet
by �2.5¢ (that is, increase the cost of the optimal diet by 2.5¢).

3 Increasing the sugar requirement by 1 oz will decrease the cost of the optimal diet by
�7.5¢ (that is, increase the cost of the optimal diet by 7.5¢).

4 Increasing the fat requirement by 1 oz will leave the cost of the optimal diet un-
changed.

The entry in the DUAL PRICE column for any constraint is, however, the negative of
the constraint’s dual variable. Thus, for the diet problem, we see from Figure 6 that the
optimal dual solution to the diet problem is given by cBVB�1 � [0 2.5 7.5 0]. When
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Network Models

Many important optimization problems can best be analyzed by means of a graphical or network
representation. In this chapter, we consider four specific network models—shortest-path prob-
lems, maximum-flow problems, CPM–PERT project-scheduling models, and minimum-spanning
tree problems—for which efficient solution procedures exist. We also discuss minimum-cost net-
work flow problems (MCNFPs), of which transportation, assignment, transshipment, shortest-
path, and maximum-flow problems and the CPM project-scheduling models are all special cases.
Finally, we discuss a generalization of the transportation simplex, the network simplex, which can
be used to solve MCNFPs. We begin the chapter with some basic terms used to describe
graphs and networks.

8.1 Basic Definitions
A graph, or network, is defined by two sets of symbols: nodes and arcs. First, we define
a set (call it V ) of points, or vertices. The vertices of a graph or network are also called
nodes.

We also define a set of arcs A.

D E F I N I T I O N ■ An arc consists of an ordered pair of vertices and represents a possible direction
of motion that may occur between vertices. ■

For our purposes, if a network contains an arc ( j, k), then motion is possible from node
j to node k. Suppose nodes 1, 2, 3, and 4 of Figure 1 represent cities, and each arc rep-
resents a (one-way) road linking two cities. For this network, V � {1, 2, 3, 4} and A �
{(1, 2), (2, 3), (3, 4), (4, 3), (4, 1)}. For the arc ( j, k), node j is the initial node, and node
k is the terminal node. The arc ( j, k) is said to go from node j to node k. Thus, the arc
(2, 3) has initial node 2 and terminal node 3, and it goes from node 2 to node 3. The arc
(2, 3) may be thought of as a (one-way) road on which we may travel from city 2 to city
3. In Figure 1, the arcs show that travel is allowed from city 3 to city 4, and from city 4
to city 3, but that travel between the other cities may be one way only.

Later, we often discuss a group or collection of arcs. The following definitions are con-
venient ways to describe certain groups or collections of arcs.

D E F I N I T I O N ■ A sequence of arcs such that every arc has exactly one vertex in common with
the previous arc is called a chain. ■



D E F I N I T I O N ■ A path is a chain in which the terminal node of each arc is identical to the initial
node of the next arc. ■

For example, in Figure 1, (1, 2)–(2, 3)–(4, 3) is a chain but not a path; (1, 2)–(2, 3)–
(3, 4) is a chain and a path. The path (1, 2)–(2, 3)–(3, 4) represents a way to travel from
node 1 to node 4.

8.2 Shortest-Path Problems
In this section, we assume that each arc in the network has a length associated with it.
Suppose we start at a particular node (say, node 1). The problem of finding the shortest
path (path of minimum length) from node 1 to any other node in the network is called a
shortest-path problem. Examples 1 and 2 are shortest-path problems.

Let us consider the Powerco example (Figure 2). Suppose that when power is sent from
plant 1 (node 1) to city 1 (node 6), it must pass through relay substations (nodes 2–5).
For any pair of nodes between which power can be transported, Figure 2 gives the dis-
tance (in miles) between the nodes. Thus, substations 2 and 4 are 3 miles apart, and power
cannot be sent between substations 4 and 5. Powerco wants the power sent from plant 1
to city 1 to travel the minimum possible distance, so it must find the shortest path in Fig-
ure 2 that joins node 1 to node 6.

If the cost of shipping power were proportional to the distance the power travels, then
knowing the shortest path between plant 1 and city 1 in Figure 2 (and the shortest path
between plant i and city j in similar diagrams) would be necessary to determine the ship-
ping costs for the transportation version of the Powerco problem discussed in Chapter 7.
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I have just purchased (at time 0) a new car for $12,000. The cost of maintaining a car dur-
ing a year depends on its age at the beginning of the year, as given in Table 1. To avoid
the high maintenance costs associated with an older car, I may trade in my car and pur-
chase a new car. The price I receive on a trade-in depends on the age of the car at the
time of trade-in (see Table 2). To simplify the computations, we assume that at any time,
it costs $12,000 to purchase a new car. My goal is to minimize the net cost (purchasing
costs � maintenance costs � money received in trade-ins) incurred during the next five
years. Formulate this problem as a shortest-path problem.

Solution Our network will have six nodes (1, 2, 3, 4, 5, and 6). Node i is the beginning of year i.
For i � j, an arc (i, j) corresponds to purchasing a new car at the beginning of year i and
keeping it until the beginning of year j. The length of arc (i, j) (call it cij) is the total net
cost incurred in owning and operating a car from the beginning of year i to the beginning
of year j if a new car is purchased at the beginning of year i and this car is traded in for
a new car at the beginning of year j. Thus,

cij � maintenance cost incurred during years i, i � 1, . . . , j � 1

� cost of purchasing car at beginning of year i

� trade-in value received at beginning of year j

Applying this formula to the information in the problem yields (all costs are in thousands)

c12 � 2 � 12 � 7 � 7 c16 � 2 � 4 � 5 � 9 � 12 � 12 � 0 � 44

c13 � 2 � 4 � 12 � 6 � 12 c23 � 2 � 12 � 7 � 7

c14 � 2 � 4 � 5 � 12 � 2 �21 c24 � 2 � 4 � 12 � 6 � 12

c15 � 2 � 4 � 5 � 9 � 12 � 1 � 31 c25 � 2 � 4 � 5 � 12 � 2 � 21
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Equipment ReplacementE X A M P L E  2

TA B L E  1
Car Maintenance Costs

Annual
Age of Car Maintenance
(Years) Cost ($)

0 2,000
1 4,000
2 5,000
3 9,000
4 12,000

TA B L E  2
Car Trade-in Prices

Age of Car
(Years) Trade-in Price

1 7,000
2 6,000
3 2,000
4 1,000
5 0



c26 � 2 � 4 � 5 � 9 � 12 � 1 �31 c45 � 2 � 12 � 7 � 7

c34 � 2 � 12 � 7 � 7 c46 � 2 � 4 � 12 � 6 � 12

c35 � 2 � 4 � 12 � 6 � 12 c56 � 2 � 12 � 7 � 7

c36 � 2 � 4 � 5 � 12 � 2 � 21

We now see that the length of any path from node 1 to node 6 is the net cost incurred
during the next five years corresponding to a particular trade-in strategy. For example,
suppose I trade in the car at the beginning of year 3 and next trade in the car at the end
of year 5 (the beginning of year 6). This strategy corresponds to the path 1–3–6 in Fig-
ure 3. The length of this path (c13 � c36) is the total net cost incurred during the next five
years if I trade in the car at the beginning of year 3 and at the beginning of year 6. Thus,
the length of the shortest path from node 1 to node 6 in Figure 3 is the minimum net cost
that can be incurred in operating a car during the next five years.

Dijkstra’s Algorithm

Assuming that all arc lengths are nonnegative, the following method, known as Dijkstra’s
algorithm, can be used to find the shortest path from a node (say, node 1) to all other
nodes. To begin, we label node 1 with a permanent label of 0. Then we label each node i
that is connected to node 1 by a single arc with a “temporary” label equal to the length
of the arc joining node 1 to node i. Each other node (except, of course, for node 1) will
have a temporary label of ∞. Choose the node with the smallest temporary label and make
this label permanent.

Now suppose that node i has just become the (k � 1)th node to be given a permanent
label. Then node i is the kth closest node to node 1. At this point, the temporary label of
any node (say, node i�) is the length of the shortest path from node 1 to node i� that passes
only through nodes contained in the k � 1 closest nodes to node 1. For each node j that
now has a temporary label and is connected to node i by an arc, we replace node j’s tem-
porary label with

min �
(Here, min{a, b} is the smaller of a and b.) The new temporary label for node j is the
length of the shortest path from node 1 to node j that passes only through nodes contained
in the k closest nodes to node 1. We now make the smallest temporary label a permanent
label. The node with this new permanent label is the (k � 1)th closest node to node 1.
Continue this process until all nodes have a permanent label. To find the shortest path
from node 1 to node j, work backward from node j by finding nodes having labels dif-

node j’s current temporary label
node i’s permanent label � length of arc (i, j)
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fering by exactly the length of the connecting arc. Of course, if we want the shortest path
from node 1 to node j, we can stop the labeling process as soon as node j receives a per-
manent label.

To illustrate Dijkstra’s algorithm, we find the shortest path from node 1 to node 6 in
Figure 2. We begin with the following labels (a * represents a permanent label, and the
ith number is the label of the node i): [0* 4 3 ∞ ∞ ∞]. Node 3 now has the small-
est temporary label. We therefore make node 3’s label permanent and obtain the follow-
ing labels:

[0* 4 3* � � �]

We now know that node 3 is the closest node to node 1. We compute new temporary la-
bels for all nodes that are connected to node 3 by a single arc. In Figure 2 that is node 5.

New node 5 temporary label � min{�, 3 � 3} � 6

Node 2 now has the smallest temporary label; we now make node 2’s label permanent.
We now know that node 2 is the second closest node to node 1. Our new set of labels is

[0* 4* 3* � 6 �]

Because nodes 4 and 5 are connected to the newly permanently labeled node 2, we must
change the temporary labels of nodes 4 and 5. Node 4’s new temporary label is min {�,
4 � 3} � 7 and node 5’s new temporary label is min {6, 4 � 2} � 6. Node 5 now has
the smallest temporary label, so we make node 5’s label permanent. We now know that
node 5 is the third closest node to node 1. Our new labels are

[0* 4* 3* 7 6* �]

Only node 6 is connected to node 5, so node 6’s temporary label will change to min
{�, 6 � 2} � 8. Node 4 now has the smallest temporary label, so we make node 4’s la-
bel permanent. We now know that node 4 is the fourth closest node to node 1. Our new
labels are

[0* 4* 3* 7* 6* 8]

Because node 6 is connected to the newly permanently labeled node 4, we must change
node 6’s temporary label to min {8, 7 � 2} � 8. We can now make node 6’s label per-
manent. Our final set of labels is [0* 4* 3* 7* 6* 8*]. We can now work back-
ward and find the shortest path from node 1 to node 6. The difference between node 6’s
and node 5’s permanent labels is 2 � length of arc (5, 6), so we go back to node 5. The
difference between node 5’s and node 2’s permanent labels is 2 � length of arc (2, 5), so
we may go back to node 2. Then, of course, we must go back to node 1. Thus, 1–2–5–6
is a shortest path (of length 8) from node 1 to node 6. Observe that when we were at node
5, we could also have worked backward to node 3 and obtained the shortest path 1–3–5–6.

The Shortest-Path Problem as a Transshipment Problem

Finding the shortest path between node i and node j in a network may be viewed as a
transshipment problem. Simply try to minimize the cost of sending one unit from node i
to node j (with all other nodes in the network being transshipment points), where the cost
of sending one unit from node k to node k� is the length of arc (k, k�) if such an arc ex-
ists and is M (a large positive number) if such an arc does not exist. As in Section 7.6,
the cost of shipping one unit from a node to itself is zero. Following the method described
in Section 7.6, this transshipment problem may be transformed into a balanced trans-
portation problem.
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To illustrate the preceding ideas, we formulate the balanced transportation problem as-
sociated with finding the shortest path from node 1 to node 6 in Figure 2. We want to send
one unit from node 1 to node 6. Node 1 is a supply point, node 6 is a demand point, and
nodes 2, 3, 4, and 5 will be transshipment points. Using s � 1, we obtain the balanced trans-
portation problem shown in Table 3. This transportation problem has two optimal solutions:

1 z � 4 � 2 � 2 � 8, x12 � x25 � x56 � x33 � x44 � 1 (all other variables equal 0).
This solution corresponds to the path 1–2–5–6.

2 z � 3 � 3 � 2 � 8, x13 � x35 � x56 � x22 � x44 � 1 (all other variables equal 0).
This solution corresponds to the path 1–3–5–6.

R E M A R K After formulating a shortest-path problem as a transshipment problem, the problem may be solved
easily by using LINGO or a spreadsheet optimizer. See Section 7.1 for details.
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1 Find the shortest path from node 1 to node 6 in Figure 3.

2 Find the shortest path from node 1 to node 5 in Figure 4.

3 Formulate Problem 2 as a transshipment problem.

4 Use Dijkstra’s algorithm to find the shortest path from
node 1 to node 4 in Figure 5. Why does Dijkstra’s algorithm
fail to obtain the correct answer?

5 Suppose it costs $10,000 to purchase a new car. The
annual operating cost and resale value of a used car are
shown in Table 4. Assuming that one now has a new car,
determine a replacement policy that minimizes the net costs
of owning and operating a car for the next six years.
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6 It costs $40 to buy a telephone from the department
store. Assume that I can keep a telephone for at most five
years and that the estimated maintenance cost each year of
operation is as follows: year 1, $20; year 2, $30; year 3,
$40; year 4, $60; year 5, $70. I have just purchased a new
telephone. Assuming that a telephone has no salvage value,
determine how to minimize the total cost of purchasing and
operating a telephone for the next six years.

7 At the beginning of year 1, a new machine must be
purchased. The cost of maintaining a machine i years old is
given in Table 5.

The cost of purchasing a machine at the beginning of
each year is given in Table 6.

There is no trade-in value when a machine is replaced.
Your goal is to minimize the total cost (purchase plus
maintenance) of having a machine for five years. Determine
the years in which a new machine should be purchased.

Group B

8† A library must build shelving to shelve 200 4-inch high
books, 100 8-inch high books, and 80 12-inch high books.
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Each book is 0.5 inch thick. The library has several ways to
store the books. For example, an 8-inch high shelf may be
built to store all books of height less than or equal to 8
inches, and a 12-inch high shelf may be built for the 12-inch
books. Alternatively, a 12-inch high shelf might be built to
store all books. The library believes it costs $2,300 to build
a shelf and that a cost of $5 per square inch is incurred for
book storage. (Assume that the area required to store a book
is given by height of storage area times book’s thickness.)

Formulate and solve a shortest-path problem that could
be used to help the library determine how to shelve the
books at minimum cost. (Hint: Have nodes 0, 4, 8, and 12,
with cij being the total cost of shelving all books of height
� i and 	 j on a single shelf.)

9 A company sells seven types of boxes, ranging in volume
from 17 to 33 cubic feet. The demand and size of each box
is given in Table 7. The variable cost (in dollars) of producing
each box is equal to the box’s volume. A fixed cost of $1,000
is incurred to produce any of a particular box. If the company
desires, demand for a box may be satisfied by a box of
larger size. Formulate and solve a shortest-path problem
whose solution will minimize the cost of meeting the
demand for boxes.

10 Explain how by solving a single transshipment problem
you can find the shortest path from node 1 in a network to
each other node in the network.

8.3 Maximum-Flow Problems
Many situations can be modeled by a network in which the arcs may be thought of as hav-
ing a capacity that limits the quantity of a product that may be shipped through the arc.
In these situations, it is often desired to transport the maximum amount of flow from a
starting point (called the source) to a terminal point (called the sink). Such problems are

TA B L E  4

Age of Car Resale Operating
(Years) Value (S) Cost ($)

1 7,000 300 (year 1)
2 6,000 500 (year 2)
3 4,000 800 (year 3)
4 3,000 1,200 (year 4)
5 2,000 1,600 (year 5)
6 1,000 2,200 (year 6)

TA B L E  5

Age at Beginning Maintenance Cost
of Year for Next Year ($)

0 38,000
1 50,000
2 97,000
3 182,000
4 304,000

TA B L E  6

Year Purchase Cost ($)

1 170,000
2 190,000
3 210,000
4 250,000
5 300,000

TA B L E  7

Box

1 2 3 4 5 6 7

Size 33 30 26 24 19 18 17
Demand 400 300 500 700 200 400 200

†Based on Ravindran (1971).



called maximum-flow problems. Several specialized algorithms exist to solve maximum-
flow problems. In this section, we begin by showing how linear programming can be used
to solve a maximum-flow problem. Then we discuss the Ford–Fulkerson (1962) method
for solving maximum-flow problems.

LP Solution of Maximum-Flow Problems

Sunco Oil wants to ship the maximum possible amount of oil (per hour) via pipeline from
node so to node si in Figure 6. On its way from node so to node si, oil must pass through
some or all of stations 1, 2, and 3. The various arcs represent pipelines of different di-
ameters. The maximum number of barrels of oil (millions of barrels per hour) that can be
pumped through each arc is shown in Table 8. Each number is called an arc capacity.
Formulate an LP that can be used to determine the maximum number of barrels of oil per
hour that can be sent from so to si.

Solution Node so is called the source node because oil flows out of it but no oil flows into it. Anal-
ogously, node si is called the sink node because oil flows into it and no oil flows out of
it. For reasons that will soon become clear, we have added an artificial arc a0 from the
sink to the source. The flow through a0 is not actually oil, hence the term artificial arc.

To formulate an LP that will yield the maximum flow from node so to si, we observe
that Sunco must determine how much oil (per hour) should be sent through arc (i, j). Thus,
we define

xij � millions of barrels of oil per hour that will pass through arc (i,j) of pipeline

As an example of a possible flow (termed a feasible flow), consider the flow indentified
by the numbers in parentheses in Figure 6.

xso,1 � 2, x13 � 0, x12 � 2, x3,si � 0, x2,si � 2, xsi,so � 2, xso,2 � 0
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For a flow to be feasible, it must have two characteristics:

0 	 flow through each arc 	 arc capacity (1)

and

Flow into node i � flow out of node i (2)

We assume that no oil gets lost while being pumped through the network, so at each
node, a feasible flow must satify (2), the conservation-of-flow constraint. The introduction
of the artificial arc a0 allows us to write the conservation-of-flow constraint for the source
and sink.

If we let x0 be the flow through the artificial arc, then conservation of flow implies that
x0 � total amount of oil entering the sink. Thus, Sunco’s goal is to maximize x0 subject
to (1) and (2):

max z � x0

s.t. xso,1 	 2 (Arc capacity constraints)

xso,2 	 3

x12 	 3

x2,si 	 2

x13 	 4

x3,si 	 1

x0 � xso,1 � xso,2 (Node so flow constraint)

xso,1 � x12 � x13 (Node 1 flow constraint)

xso,2 � x12 � x2,si (Node 2 flow constraint)

x13 � x12 � x3,si (Node 3 flow constraint)

x3,si � x2,si � x0 (Node si flow constraint)

xij 
 0

One optimal solution to this LP is z � 3, xso,1 � 2, x13 � 1, x12 � 1, xso,2 � 1, x3,si �
1, x2,si � 2, x0 � 3. Thus, the maximum possible flow of oil from node so to si is 3 mil-
lion barrels per hour, with 1 million barrels each sent via the following paths: so–1–2–si,
so–1–3–si, and so–2–si.

The linear programming formulation of maximum-flow problems is a special case of
the minimum-cost network flow problem (MCNFP) discussed in Section 8.5. A general-
ization of the transportation simplex (known as the network simplex) can be used to solve
MCNFPs.

Before discussing the Ford–Fulkerson method for solving maximum-flow problems,
we give two examples for situations in which a maximum-flow problem might arise.

Fly-by-Night Airlines must determine how many connecting flights daily can be arranged
between Juneau, Alaska, and Dallas, Texas. Connecting flights must stop in Seattle and
then stop in Los Angeles or Denver. Because of limited landing space, Fly-by-Night is
limited to making the number of daily flights between pairs of cities shown in Table 9.
Set up a maximum-flow problem whose solution will tell the airline how to maximize the
number of connecting flights daily from Juneau to Dallas.
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Solution The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maxi-
mum number of daily flights between city i and city j. The optimal solution to this max-
imum flow problem is z � x0 � 3, xJ,S � 3, xS,L � 1, xS,De � 2, xL,D � 1, xDe,D � 2.
Thus, Fly-by-Night can send three flights daily connecting Juneau and Dallas. One flight
connects via Juneau–Seattle–L.A.–Dallas, and two flights connect via
Juneau–Seattle–Denver–Dallas.

Five male and five female entertainers are at a dance. The goal of the matchmaker is to
match each woman with a man in a way that maximizes the number of people who are
matched with compatible mates. Table 10 describes the compatibility of the entertainers.
Draw a network that makes it possible to represent the problem of maximizing the num-
ber of compatible pairings as a maximum-flow problem.

Solution Figure 8 is the appropriate network. In Figure 8, there is an arc with capacity 1 joining
the source to each man, an arc with capacity 1 joining each pair of compatible mates, and
an arc with capacity 1 joining each woman to the sink. The maximum flow in this net-
work is the number of compatible couples that can be created by the matchmaker. For ex-
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TA B L E  9
Arc Capacities for Fly-by-Night Airlines

Maximum Number
Cities of Daily Flights

Juneau–Seattle (J, S) 3
Seattle–L.A. (S, L) 2
Seattle–Denver (S, De) 3
L.A.–Dallas (L, D) 1
Denver–Dallas (De, D) 2

3 23

2

Seattle Denver

1

Los Angeles

Juneau Dallas

so si1 2

3

F I G U R E  7
Network for Fly-by-

Night Airlines

MatchmakingE X A M P L E  5

TA B L E  10
Compatibilities for Matching

Loni Meryl Katharine Linda Victoria
Anderson Streep Hepburn Evans Principal

Kevin Costner — C — — —
Burt Reynolds C — — — —
Tom Selleck C C — — —
Michael Jackson C C — — C
Tom Cruise — — C C C

Note: C indicates compatibility.



ample, if the matchmaker pairs KC and MS, BR and LA, MJ and VP, and TC and KH, a
flow of 4 from source to sink would be obtained. (This turns out to be a maximum flow
for the network.)

To see why our network representation correctly models the matchmaker’s problem,
note that because the arc joining each woman to the sink has a capacity of 1, conserva-
tion of flow ensures that each woman will be matched with at most one man. Similarly,
because each arc from the source to a man has a capacity of 1, each man can be paired
with at most one woman. Because arcs do not exist between noncompatible mates, we can
be sure that a flow of k units from source to sink represents an assignment of men to
women in which k compatible couples are created.

Solving Maximum-Flow Problems with LINGO

The maximum flow in a network can be found using LINDO, but LINGO greatly lessens
the effort needed to communicate the necessary information to the computer. The fol-
lowing LINGO program (in the file Maxflow.lng) can be used to find the maximum flow
from source to sink in Figure 6.

MODEL:
1]SETS:
2]NODES/1..5/;
3]ARCS(NODES,NODES)/1,2  1,3  2,3  2,4  3,5  4,5  5,1/
4]:CAP,FLOW;
5]ENDSETS
6]MAX=FLOW (5,1);
7]@FOR(ARCS(I,J):FLOW(I,J)<CAP(I,J));
8]@FOR(NODES(I):@SUM(ARCS(J,I):FLOW(J,I))
9]=@SUM(ARCS(I,J):FLOW(I,J)));

10]DATA:
11]CAP=2,3,3,4,2,1,1000;
12]ENDDATA

END

If some nodes are identified by numbers, then LINGO will not allow you to identify
other nodes with names involving letters. Thus, we have identified node 1 in line 2 with
node so in Figure 6 and node 5 in line 2 with node si. Also nodes 1, 2, and 3 in Figure 6
correspond to nodes 2, 3, and 4, respectively, in line 2 of our LINGO program. Thus, line
2 defines the nodes of the flow network. In line 3, we define the arcs of the network by
listing them (separated by spaces). For example, 1, 2 represents the arc from the source to
node 1 in Figure 6 and 5,1 is the artificial arc. In line 4, we indicate that an arc capacity
and a flow are associated with each arc. Line 5 ends the definition of the relevant sets.

In line 6, we indicate that our objective is to maximize the flow through the artificial
arc (this equals the flow into the sink). Line 7 specifies the arc capacity constraints; for
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8.5 Minimum-Cost Network Flow Problems
The transportation, assignment, transshipment, shortest-path, maximum flow, and CPM
problems are all special cases of the minimum-cost network flow problem (MCNFP). Any
MCNFP can be solved by a generalization of the transportation simplex called the net-
work simplex.

To define an MCNFP, let

xij � number of units of flow sent from node i to node j through arc (i, j)

bi � net supply (outflow � inflow) at node i

cij � cost of transporting 1 unit of flow from node i to node j via arc (i, j)

Lij � lower bound on flow through arc (i, j)
Lij � (if there is no lower bound, let Lij � 0)

Uij � upper bound on flow through arc (i, j)
Uij � (if there is no upper bound, let Uij � �)

Then the MCNFP may be written as

min   �
all arcs

cijxij

s.t. �
j

xij � �
k

xki � bi (for each node i in the network) (8)

Lij 	 xij 	 Uij (for each arc in the network) (9)

Constraints (8) stipulate that the net flow out of node i must equal bi. Constraints (8)
are referred to as the flow balance equations for the network. Constraints (9) ensure that
the flow through each arc satisfies the arc capacity restrictions. In all our previous exam-
ples, we have set Lij � 0.

Let us show that transportation and maximum-flow problems are special cases of the
minimum-cost network flow problem.

Formulating a Transportation Problem as an MCNFP

Consider the transportation problem in Table 28. Nodes 1 and 2 are the two supply points,
and nodes 3 and 4 are the two demand points. Then b1 � 4, b2 � 5, b3 � �6, and b4 �
�3. The network corresponding to this transportation problem contains arcs (1, 3), (1, 4),
(2, 3), and (2, 4) (see Figure 45). The LP for this transportation problem may be written
as shown in Table 29.

The first two constraints are the supply constraints, and the last two constraints are (af-
ter being multiplied by �1) the demand constraints. Because this transportation problem



has no arc capacity restrictions, the flow balance equations are the only constraints. We
note that if the problem had not been balanced, we could not have formulated the problem
as an MCNFP. This is because if total supply exceeded total demand, we would not know
with certainty the net outflow at each supply point. Thus, to formulate a transportation (or
a transshipment) problem as an MCNFP, it may be necessary to add a dummy point.

Formulating a Maximum-Flow Problem as an MCNFP

To see how a maximum-flow problem fits into the minimum-cost network flow context,
consider the problem of finding the maximum flow from source to sink in the network of
Figure 6. After creating an arc a0 joining the sink to the source, we have bso � b1� b2 �
b3 � bsi � 0. Then the LP constraints for finding the maximum flow in Figure 6 may be
written as shown in Table 30.

The first five constraints are the flow balance equations for the nodes of the network,
and the last six constraints are the arc capacity constraints. Because there is no upper limit
on the flow through the artificial arc, there is no arc capacity constraint for a0.

The flow balance equations in any MCNFP have the following important property:
Each variable xij has a coefficient of �1 in the node i flow balance equation, a coefficient
of �1 in the node j flow balance equation, and a coefficient of 0 in all other flow balance
equations. For example, in a transportation problem, the variable xij will have a coeffi-
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1Supply point 1
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3

2 4

F I G U R E  45
Representation of

Transportation Problem
as an MCNFP

TA B L E  29
MCNFP Representation of Transportation Problem

min z � x13 � 2x14 � 3x23 � 4x24

x13 x14 x23 x24 rhs Constraint

1 1 0 0 � 4 Node 1
0 0 1 1 � 5 Node 2

�1 0 �1 0 � �6 Node 3
1 �1 0 �1 � �3 Node 4

All variables non-negative
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cient of �1 in the flow balance equation for supply point i, a coefficient of �1 in the flow
balance equation for demand point j, and a coefficient of 0 in all other flow balance equa-
tions. Even if the constraints of an LP do not appear to contain the flow balance equa-
tions of a network, clever transformation of an LP’s constraints can often show that an LP
is equivalent to an MCNFP (see Problem 6 at the end of this section).

An MCNFP can be solved by a generalization of the transportation simplex known as the
network simplex algorithm (see Section 8.7). As with the transportation simplex, the pivots
in the network simplex involve only additions and subtractions. This fact can be used to prove
that if all the bi’s and arc capacities are integers, then in the optimal solution to an MCNFP,
all the variables will be integers. Computer codes that use the network simplex can quickly
solve even extremely large network problems. For example, MCNFPs with 5,000 nodes and
600,000 arcs have been solved in under 10 minutes. To use a network simplex computer code,
the user need only input a list of the network’s nodes and arcs, the cij’s and arc capacity for
each arc, and the bi’s for each node. The network simplex is efficient and easy to use, so it is
extremely important to formulate an LP, if at all possible, as an MCNFP.

To close this section, we formulate a simple traffic assignment problem as an MCNFP.

Each hour, an average of 900 cars enter the network in Figure 46 at node 1 and seek to
travel to node 6. The time it takes a car to traverse each arc is shown in Table 31. In Fig-
ure 46, the number above each arc is the maximum number of cars that can pass by any
point on the arc during a one-hour period. Formulate an MCNFP that minimizes the to-
tal time required for all cars to travel from node 1 to node 6.

Solution Let

xij � number of cars per hour that traverse the arc from node i to node j

Then we want to minimize

z � 10x12 � 50x13 � 70x25 � 30x24 � 30x56 � 30x45 � 60x46 � 60x35 � 10x34

We are given that b1 � 900, b2 � b3 � b4 � b5 � 0, and b6 � �900 (we will not in-
troduce the artificial arc connecting node 6 to node 1). The constraints for this MCNFP
are shown in Table 32.

Traffic MCNFPE X A M P L E  7

TA B L E  30
MCNFP Representation of Maximum-Flow Problem

min z � x0

xso,1 xso,2 x13 x12 x3,si x2,si x0 rhs Constraint

1 1 0 0 0 0 �1 � 0 Node so
�1 0 1 1 0 0 0 � 0 Node 1

0 �1 0 �1 0 1 0 � 0 Node 2
0 0 �1 0 1 0 0 � 0 Node 3
0 0 0 0 �1 �1 1 � 0 Node si
1 0 0 0 0 0 0 	 2 Arc (so, 1)
0 1 0 0 0 0 0 	 3 Arc (so, 2)
0 0 1 0 0 0 0 	 4 Arc (1, 3)
0 0 0 1 0 0 0 	 3 Arc (1, 2)
0 0 0 0 1 0 0 	 1 Arc (3, si )
0 0 0 0 0 1 0 	 2 Arc (2, si )

All variables nonnegative



Solving an MCNFP with LINGO

The following LINGO program (file Traffic.lng) can be used to find the optimal solution
to Example 7 (or any MCNFP).
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F I G U R E  46
Representation of

Traffic Example as
MCNFP

TA B L E  31
Travel Times for Traffic
Example

Time
Arc (Minutes)

(1, 2) 10
(1, 3) 50
(2, 5) 70
(2, 4) 30
(5, 6) 30
(4, 5) 30
(4, 6) 60
(3, 5) 60
(3, 4) 10

x12 x13 x24 x25 x34 x35 x45 x46 x56 rhs Constraint

1 1 0 0 0 0 0 0 0 � 900 Node 1
�1 0 1 1 0 0 0 0 0 � 0 Node 2

0 �1 0 0 1 1 0 0 0 � 0 Node 3
0 0 �1 0 �1 0 1 1 0 � 0 Node 4
0 0 0 �1 0 �1 �1 0 1 � 0 Node 5
0 0 0 0 0 0 0 �1 �1 � �900 Node 6
1 0 0 0 0 0 0 0 0 	 800 Arc (1, 2)
0 1 0 0 0 0 0 0 0 	 600 Arc (1, 3)
0 0 1 0 0 0 0 0 0 	 600 Arc (2, 4)
0 0 0 1 0 0 0 0 0 	 100 Arc (2, 5)
0 0 0 0 1 0 0 0 0 	 300 Arc (3, 4)
0 0 0 0 0 1 0 0 0 	 400 Arc (3, 5)
0 0 0 0 0 0 1 0 0 	 600 Arc (4, 5)
0 0 0 0 0 0 0 1 0 	 400 Arc (4, 6)
0 0 0 0 0 0 0 0 1 	 600 Arc (5, 6)

All variables non-negative

TA B L E  32
MCNFP Representation of

Traffic Example

Traffic.lng



MODEL:
1] SETS:
2] NODES/1..6/:SUPP;
3] ARCS(NODES,NODES)/1,2  1,3  2,4  2,5  3,4  3,5  4,5  4,6  5,6/
4] :CAP,FLOW,COST;
5] ENDSETS
6] MIN=@SUM(ARCS:COST*FLOW);
7] @FOR(ARCS(I,J):FLOW(I,J)<CAP(I,J));
8] @FOR(NODES(I):-@SUM(ARCS)(J,I):FLOW(J,I))
9] +@SUM(ARCS(I,J):FLOW(I,J))=SUPP(I));

10] DATA:
11] COST=10,50,30,70,10,60,30,60,30;
12] SUPP=900,0,0,0,0,-900;
13] CAP=800,600,600,100,300,400,600,400,600;
14] ENDDATA

END

In line 2, we define the network’s nodes and associate a net supply (flow out�flow in)
with each node. The supplies data are entered in line 12. In line 3, we define, by listing, the
arcs in the network and in line 4 associate a capacity (CAP), a flow (FLOW), and a cost-per-
unit-shipped (COST) with each arc. The unit shipping costs data are entered in line 11. Line
6 generates the objective function by summing over all arcs (unit cost for arc)*(flow through
arc). Line 7 generates each arc’s capacity constraint (arc capacities data are entered in line
13). For each node, lines 8–9 generate the conservation-of-flow constraint. They imply that
for each node I, �(flow into node I) � (flow out of node I) � (supply of node I). When
solved on LINGO, we find that the solution to Example 7 is z �95,000 minutes, x12 � 700,
x13 � 200, x24 � 600, x25 � 100, x34 � 200, x45 � 400, x46 � 400, x56 � 500.

Our LINGO program can be used to solve any MCNFP. Just input the set of nodes,
supplies, arcs, and unit shipping cost; hit GO and you are done!

P R O B L E M S
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Note: To formulate a problem as an MCNFP, you should
draw the appropriate network and determine the cij’s, the
bi’s, and the arc capacities.

Group A

1 Formulate the problem of finding the shortest path from
node 1 to node 6 in Figure 2 as an MCNFP. (Hint: Think of
finding the shortest path as the problem of minimizing the
total cost of sending 1 unit of flow from node 1 to node 6.)

2 a Find the dual of the LP that was used to find the
length of the critical path for Example 6 of Section 8.4.
b Show that the answer in part (a) is an MCNFP.
c Explain why the optimal objective function value for
the LP found in part (a) is the longest path in the proj-
ect network from node 1 to node 6. Why does this jus-
tify our earlier claim that the critical path in a project
network is the longest path from the start node to the
finish node?

3 Fordco produces cars in Detroit and Dallas. The Detroit
plant can produce as many as 6,500 cars, and the Dallas
plant can produce as many as 6,000 cars. Producing a car
costs $2,000 in Detroit and $1,800 in Dallas. Cars must be
shipped to three cities. City 1 must receive 5,000 cars, city
2 must receive 4,000 cars, and city 3 must receive 3,000

cars. The cost of shipping a car from each plant to each city
is given in Table 33. At most, 2,200 cars may be sent from
a given plant to a given city. Formulate an MCNFP that can
be used to minimize the cost of meeting demand.

4 Each year, Data Corporal produces as many as 400
computers in Boston and 300 computers in Raleigh. Los
Angeles customers must receive 400 computers, and 300
computers must be supplied to Austin customers. Producing
a computer costs $800 in Boston and $900 in Raleigh.
Computers are transported by plane and may be sent through
Chicago. The costs of sending a computer between pairs of
cities are shown in Table 34.

a Formulate an MCNFP that can be used to minimize
the total (production � distribution) cost of meeting
Data Corporal’s annual demand.

TA B L E  33

To ($)

From City 1 City 2 City 3

Detroit 800 600 300
Dallas 500 200 200



b How would you modify the part (a) formulation if at
most 200 units could be shipped through Chicago? [Hint:
Add an additional node and arc to this part (a) network.]

5 Oilco has oil fields in San Diego and Los Angeles. The
San Diego field can produce 500,000 barrels per day, and
the Los Angeles field can produce 400,000 barrels per day.
Oil is sent from the fields to a refinery, in either Dallas or
Houston (assume each refinery has unlimited capacity). To
refine 100,000 barrels costs $700 at Dallas and $900 at
Houston. Refined oil is shipped to customers in Chicago
and New York. Chicago customers require 400,000 barrels
per day, and New York customers require 300,000 barrels
per day. The costs of shipping 100,000 barrels of oil (refined
or unrefined) between cities are shown in Table 35.

a Formulate an MCNFP that can be used to determine
how to minimize the total cost of meeting all demands.
b If each refinery had a capacity of 500,000 barrels
per day, how would the part (a) answer be modified?

Group B

6 Workco must have the following number of workers
available during the next three months: month 1, 20; month
2, 16; month 3, 25. At the beginning of month 1, Workco
has no workers. It costs Workco $100 to hire a worker and
$50 to fire a worker. Each worker is paid a salary of
$140/month. We will show that the problem of determining
a hiring and firing strategy that minimizes the total cost
incurred during the next three (or in general, the next n)
months can be formulated as an MCNFP.

a Let
xij � number of workers hired at beginning of month i

and fired after working till end of month j � 1
(if j � 4, the worker is never fired). Explain why the fol-
lowing LP will yield a minimum-cost hiring and firing
strategy:

8 . 5 Minimum-Cost Network Flow Problems 455

min z � 50(x12 � x13 � x23)
� 100(x12 � x13 � x14 � x23 �x24 � x34)
� 140(x12 � x23 � x34)
� 280(x13 � x24) � 420x14

s.t. (1) x12 � x13 � x14 � x24 � e1 � 20
(Month 1 constraint)

(2) x13 � x14 � x23 � x24 � e2 � 16
(Month 2 constraint)

(3) x14 � x24 � x34 � x24 � e3 � 25
(Month 3 constraint)

xij 
 0

b To obtain an MCNFP, replace the constraints in part
(a) by

i Constraint (1);
ii Constraint (2) � Constraint (1);
iii Constraint (3) � Constraint (2);
iv � (Constraint (3)).

Explain why an LP with Constraints (i)–(iv) is an 
MCNFP.
c Draw the network corresponding to the MCNFP ob-
tained in answering part (b).

7† Braneast Airlines must determine how many airplanes
should serve the Boston–New York–Washington air corridor
and which flights to fly. Braneast may fly any of the daily
flights shown in Table 36. The fixed cost of operating an
airplane is $800/day. Formulate an MCNFP that can be used
to maximize Braneast’s daily profits. (Hint: Each node in
the network represents a city and a time. In addition to arcs
representing flights, we must allow for the possibility that
an airplane will stay put for an hour or more. We must
ensure that the model includes the fixed cost of operating a
plane. To include this cost, the following three arcs might
be included in the network: from Boston 7 P.M. to Boston 
9 A.M.; from New York 7 P.M. to New York 9 A.M.; and from
Washington 7 P.M. to Washington 9 A.M.)

8 Daisymay Van Line moves people between New York,
Philadelphia, and Washington, D.C. It takes a van one day to
travel between any two of these cities. The company incurs
costs of $1,000 per day for a van that is fully loaded and
traveling, $800 per day for an empty van that travels, $700
per day for a fully loaded van that stays in a city, and $400
per day for an empty van that remains in a city. Each day of
the week, the loads described in Table 37 must be shipped.
On Monday, for example, two trucks must be sent from
Philadelphia to New York (arriving on Tuesday). Also, two
trucks must be sent from Philadelphia to Washington on
Friday (assume that Friday shipments must arrive on
Monday). Formulate an MCNFP that can be used to
minimize the cost of meeting weekly requirements. To
simplify the formulation, assume that the requirements
repeat each week. Then it seems plausible to assume that
any of the company’s trucks will begin each week in the
same city in which it began the previous week.

TA B L E  34

To ($)

From Chicago Austin Los Angeles

Boston 80 220 280
Raleigh 100 140 170
Chicago — 40 50

TA B L E  35

To ($)

From Dallas Houston New York Chicago

Los Angeles 300 110 — —
San Diego 420 100 — —
Dallas — — 450 550
Houston — — 470 530

†This problem is based on Glover et al. (1982).



8.6 Minimum Spanning Tree Problems
Suppose that each arc (i, j) in a network has a length associated with it and that arc (i, j)
represents a way of connecting node i to node j. For example, if each node in a network
represents a computer at State University, then arc (i, j) might represent an underground
cable that connects computer i with computer j. In many applications, we want to deter-
mine the set of arcs in a network that connect all nodes such that the sum of the length
of the arcs is minimized. Clearly, such a group of arcs should contain no loop. (A loop is
often called a closed path or cycle.) For example, in Figure 47, the sequence of arcs 
(1, 2)–(2, 3)–(3, 1) is a loop.

D E F I N I T I O N ■ For a network with n nodes, a spanning tree is a group of n � 1 arcs that
connects all nodes of the network and contains no loops. ■
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TA B L E  36

Leaves Arrives Flight Variable Cost
City Time City Time Revenue of Flight (S)

N.Y. 9 A.M. Wash. 10 A.M. $900 400
N.Y. 2 P.M. Wash. 3 P.M. $600 350
N.Y. 10 A.M. Bos. 11 A.M. $800 400
N.Y. 4 P.M. Bos. 5 P.M. $1,200 450
Wash. 9 A.M. N.Y. 10 A.M. $1,100 400
Wash. 3 P.M. N.Y. 4 P.M. $900 350
Wash. 10 A.M. Bos. 12 noon $1,500 700
Wash. 5 P.M. Bos. 7 P.M. $1,800 900
Bos. 10 A.M. N.Y. 11 A.M. $900 500
Bos. 2 P.M. N.Y. 3 P.M. $800 450
Bos. 11 A.M. Wash. 1 P.M. $1,100 600
Bos. 3 P.M. Wash. 5 P.M. $1,200 650

TA B L E  37

Trip Monday Tuesday Wednesday Thursday Friday

Phil.–N.Y. 2 — — — —
Phil.–Wash. — 2 — — 2
N.Y.–Phil. 3 2 — — —
N.Y.–Wash. — — 2 2 —
N.Y.–Phil. 1 — — — —
Wash.–N.Y. — — 1 — 1

1 2
12

(1, 2)–(2, 3)–(3, 1)
is a loop
(1, 3), (2, 3) is the
minimum spanning tree

4
7

3

F I G U R E  47
Illustration of Loop and

Minimum Spanning Tree



In Figure 47, there are three spanning trees:

1 Arcs (1, 2) and (2, 3)

2 Arcs (1, 2) and (1, 3)

3 Arcs (1, 3) and (2, 3)

A spanning tree of minimum length in a network is a minimum spanning tree (MST).
In Figure 47, the spanning tree consisting of arcs (1, 3) and (2, 3) is the unique minimum
spanning tree.

The following method (MST algorithm) may be used to find a minimum spanning tree.

Step 1 Begin at any node i, and join node i to the node in the network (call it node j)
that is closest to node i. The two nodes i and j now form a connected set of nodes C �
{i, j}, and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the
network (call them C�) are referred to as the unconnected set of nodes.

Step 2 Now choose a member of C� (call it n) that is closest to some node in C. Let m
represent the node in C that is closest to n. Then the arc (m, n) will be in the minimum
spanning tree. Now update C and C�. Because n is now connected to {i, j}, C now equals
{i, j, n} and we must eliminate node n from C�.

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node
and arc to be included in the minimum spanning tree may be broken arbitrarily.

At each step the algorithm chooses the shortest arc that can be used to expand C, so the
algorithm is often referred to as a “greedy” algorithm. It is remarkable that the act of be-
ing “greedy” at each step of the algorithm can never force us later to follow a “bad arc.”
In Example 1 of Chapter 9 we will see that for some types of problems, a greedy algo-
rithm may not yield an optimal solution! A justification of the MST algorithm is given in
Problem 3 at the end of this section. Example 8 illustrates the algorithm.

The State University campus has five minicomputers. The distance between each pair of
computers (in city blocks) is given in Figure 48. The computers must be interconnected
by underground cable. What is the minimum length of cable required? Note that if no arc
is drawn connecting a pair of nodes, this means that (because of underground rock for-
mations) no cable can be laid between these two computers.

Solution We want to find the minimum spanning tree for Figure 48.

Iteration 1 Following the MST algorithm, we arbitrarily choose to begin at node 1. The
closest node to node 1 is node 2. Now C � {1, 2}, C� � {3, 4, 5}, and arc (1, 2) will be
in the minimum spanning tree (see Figure 49a).

Iteration 2 Node 5 is closest (two blocks distant) to C. Because node 5 is two blocks from
node 1 and from node 2, we may include either arc (2, 5) or arc (1, 5) in the minimum
spanning tree. We arbitrarily choose to include arc (2, 5). Then C � {1, 2, 5} and C� �
{3, 4} (see Figure 49b).

Iteration 3 Node 3 is two blocks from node 5, so we may include arc (5, 3) in the mini-
mum spanning tree. Now C � {1, 2, 3, 5} and C� � 4 (see Figure 49c).

Iteration 4 Node 5 is the closest node to node 4, so we add arc (5, 4) to the minimum
spanning tree (see Figure 49d).

We have now obtained the minimum spanning tree consisting of arcs (1, 2), (2, 5), (5, 3),
and (5, 4). The length of the minimum spanning tree is 1 � 2 � 2 � 4 � 9 blocks.

8 . 6 Minimum Spanning Tree Problems 457

MST AlgorithmE X A M P L E  8



458 C H A P T E R 8 Network Models

1
1

2

6

4

5

3

2

4 2

2

35

4

F I G U R E  48
Distances between

State University
Computers

1
1

2

6

4

5

3
C  =  [1, 2]

C   =  [3, 4, 5]

2

4 2

2

35

4

a   Iteration 1

1
1

2

6

4

5

3
C  =  [1, 2, 5]

2

4 2

2

35

4

b   Iteration 2

C   =  [3, 4]

1
1

2

6

4

5

3
C  =  [1, 2, 3, 5]

2

4 2

2

35

4

c   Iteration 3

1
1

2

6

4

5

3
Arcs (1, 2), (2, 5), (5, 3), 
and (5, 4) are the MST

2

4 2

2

35

4
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P R O B L E M S
Group A
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1 The distances (in miles) between the Indiana cities of
Gary, Fort Wayne, Evansville, Terre Haute, and South Bend
are shown in Table 38. It is necessary to build a state road
system that connects all these cities. Assume that for political
reasons no road can be built connecting Gary and Fort
Wayne, and no road can be built connecting South Bend and
Evansville. What is the minimum length of road required?

2 The city of Smalltown consists of five subdivisions.
Mayor John Lion wants to build telephone lines to ensure
that all the subdivisions can communicate with each other.
The distances between the subdivisions are given in Figure
50. What is the minimum length of telephone line required?
Assume that no telephone line can be built between
subdivisions 1 and 4.

Group B

3 In this problem, we explain why the MST algorithm
works. Define

S � minimum spanning tree
Ct � nodes connected after iteration t of MST

algorithm has been completed
Ct� � nodes not connected after iteration t of MST 

algorithm has been completed
At � set of arcs in minimum spanning tree after t

iterations of MST algorithm have been
completed

Suppose the MST algorithm does not yield a minimum
spanning tree. Then, for some t, it must be the case that all
arcs in At�1 are in S, but the arc chosen at iteration t (call it
at) of the MST algorithm is not in S. Then S must contain
some arc at� that leads from a node in Ct�1 to a node in C�t�1).
Show that by replacing arc at� with arc at, we can obtain a
shorter spanning tree than S. This contradiction proves that all
arcs chosen by the MST algorithm must be in S. Thus, the
MST algorithm does indeed find a minimum spanning tree.

4 a Three cities are at the vertices of an equilateral
triangle of unit length. Flying Lion Airlines needs to
supply connecting service between these three cities.
What is the minimum length of the two routes needed
to supply the connecting service?
b Now suppose Flying Lion Airlines adds a hub at the
“center” of the equilateral triangle. Show that the length
of the routes needed to connect the three cities has de-
creased by 13%. (Note: It has been shown that no mat-
ter how many “hubs” you add and no matter how many
points must be connected, you can never save more than
13% of the total distance needed to “span” all the orig-
inal points by adding hubs.)†

8.7 The Network Simplex Method‡

In this section, we describe how the simplex algorithm simplifies for MCNFPs. To simplify
our presentation, we assume that for each arc, Lij � 0. Then the information needed to de-
scribe an MCNFP of the form (8)–(9) may be summarized graphically as in Figure 51. We
will denote the cij for each arc by the symbol $, and the other number on each arc will rep-
resent the arc’s upper bound (Uij). The bi for any node with nonzero outflow will be listed in
parentheses. Thus, Figure 51 represents an MCNFP with c12 � 5, c25 � 2, c13 � 4, c35 � 8,
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Network for Problem 2

TA B L E  38

Fort Terre South
Gary Wayne Evansville Haute Bend

Gary — 132 217 164 58
Fort Wayne 132 — 290 201 79
Evansville 217 290 — 113 303
Terre Haute 164 201 113 — 196
South Bend 58 79 303 196 —

†Based on Peterson (1990).
‡This section covers topics that may be omitted with no loss of continuity.
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Integer Programming

Recall that we defined integer programming problems in our discussion of the Divisibility As-
sumption in Section 3.1. Simply stated, an integer programming problem (IP) is an LP in which
some or all of the variables are required to be non-negative integers.†

In this chapter (as for LPs in Chapter 3), we find that many real-life situations may be formu-
lated as IPs. Unfortunately, we will also see that IPs are usually much harder to solve than LPs.

In Section 9.1, we begin with necessary definitions and some introductory comments about
IPs. In Section 9.2, we explain how to formulate integer programming models. We also dis-
cuss how to solve IPs on the computer with LINDO, LINGO, and Excel Solver. In Sections
9.3–9.8, we discuss other methods used to solve IPs.

9.1 Introduction to Integer Programming
An IP in which all variables are required to be integers is called a pure integer pro-
gramming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1)

x1, x2 � 0, x1, x2 integer

is a pure integer programming problem.
An IP in which only some of the variables are required to be integers is called a mixed

integer programming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6

x1, x2 � 0, x1 integer

is a mixed integer programming problem (x2 is not required to be an integer).
An integer programming problem in which all the variables must equal 0 or 1 is called

a 0–1 IP. In Section 9.2, we see that 0–1 IPs occur in surprisingly many situations.‡ The
following is an example of a 0–1 IP:

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2)

2x1 � x2 � 1

x1, x2 � 0 or 1

Solution procedures especially designed for 0–1 IPs are discussed in Section 9.7.

†A nonlinear integer programming problem is an optimization problem in which either the objective function
or the left-hand side of some of the constraints are nonlinear functions and some or all of the variables must
be integers. Such problems may be solved with LINGO or Excel Solver.
‡Actually, any pure IP can be reformulated as an equivalent 0–1 IP (Section 9.7).



The concept of LP relaxation of an integer programming problem plays a key role in
the solution of IPs.

D E F I N I T I O N ■ The LP obtained by omitting all integer or 0–1 constraints on variables is called
the LP relaxation of the IP. ■

For example, the LP relaxation of (1) is

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1�)

x1, x2 � 0

and the LP relaxation of (2) is

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2�)

s.t. 2x1 � x2 � 1

x1, x2 � 0

Any IP may be viewed as the LP relaxation plus additional constraints (the constraints
that state which variables must be integers or be 0 or 1). Hence, the LP relaxation is a
less constrained, or more relaxed, version of the IP. This means that the feasible region for
any IP must be contained in the feasible region for the corresponding LP relaxation. For
any IP that is a max problem, this implies that

Optimal z-value for LP relaxation � optimal z-value for IP (3)

This result plays a key role when we discuss the solution of IPs.
To shed more light on the properties of integer programming problems, we consider

the following simple IP:

max z � 21x1 � 11x2

s.t. 7x1 � 4x2 � 13 (4)

x1, x2 � 0; x1, x2 integer

From Figure 1, we see that the feasible region for this problem consists of the following
set of points: S � {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1)}. Unlike the feasible region
for any LP, the one for (4) is not a convex set. By simply computing and comparing the
z-values for each of the six points in the feasible region, we find the optimal solution to
(4) is z � 33, x1 � 0, x2 � 3.

If the feasible region for a pure IP’s LP relaxation is bounded, as in (4), then the feasi-
ble region for the IP will consist of a finite number of points. In theory, such an IP could
be solved (as described in the previous paragraph) by enumerating the z-values for each
feasible point and determining the feasible point having the largest z-value. The problem
with this approach is that most actual IPs have feasible regions consisting of billions of
feasible points. In such cases, a complete enumeration of all feasible points would require
a large amount of computer time. As we explain in Section 9.3, IPs often are solved by
cleverly enumerating all the points in the IP’s feasible region.

Further study of (4) sheds light on other interesting properties of IPs. Suppose that a
naive analyst suggests the following approach for solving an IP: First solve the LP relax-
ation; then round off (to the nearest integer) each variable that is required to be an inte-
ger and that assumes a fractional value in the optimal solution to the LP relaxation.

Applying this approach to (4), we first find the optimal solution to the LP relaxation:
x1 � �

1
7
3
�, x2 � 0. Rounding this solution yields the solution x1 � 2, x2 � 0 as a possible
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optimal solution to (4). But x1 � 2, x2 � 0 is infeasible for (4), so it cannot possibly be
the optimal solution to (4). Even if we round x1 downward (yielding the candidate solu-
tion x1 � 1, x2 � 0), we do not obtain the optimal solution (x1 � 0, x2 � 3 is the opti-
mal solution).

For some IPs, it can even turn out that every roundoff of the optimal solution to the
LP relaxation is infeasible. To see this, consider the following IP:

max z � 4x1 � x2

s.t. 2x1 � x2 � 5

s.t. 2x1 � 3x2 � 5

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation for this IP is z � 10, x1 � �
5
2

�, x2 � 0. Round-
ing off this solution, we obtain either the candidate x1 � 2, x2 � 0 or the candidate x1 �
3, x2 � 0. Neither candidate is a feasible solution to the IP.

Recall from Chapter 4 that the simplex algorithm allowed us to solve LPs by going
from one basic feasible solution to a better one. Also recall that in most cases, the sim-
plex algorithm examines only a small fraction of all basic feasible solutions before the
optimal solution is obtained. This property of the simplex algorithm enables us to solve
relatively large LPs by expending a surprisingly small amount of computational effort.
Analogously, one would hope that an IP could be solved via an algorithm that proceeded
from one feasible integer solution to a better feasible integer solution. Unfortunately, no
such algorithm is known.

In summary, even though the feasible region for an IP is a subset of the feasible region
for the IP’s LP relaxation, the IP is usually much more difficult to solve than the IP’s LP
relaxation.

9.2 Formulating Integer Programming Problems
In this section, we show how practical solutions can be formulated as IPs. After com-
pleting this section, the reader should have a good grasp of the art of developing integer
programming formulations. We begin with some simple problems and gradually build to
more complicated formulations. Our first example is a capital budgeting problem remi-
niscent of the Star Oil problem of Section 3.6.
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Stockco is considering four investments. Investment 1 will yield a net present value (NPV)
of $16,000; investment 2, an NPV of $22,000; investment 3, an NPV of $12,000; and in-
vestment 4, an NPV of $8,000. Each investment requires a certain cash outflow at the pres-
ent time: investment 1, $5,000; investment 2, $7,000; investment 3, $4,000; and investment
4, $3,000. Currently, $14,000 is available for investment. Formulate an IP whose solution
will tell Stockco how to maximize the NPV obtained from investments 1–4.

Solution As in LP formulations, we begin by defining a variable for each decision that Stockco
must make. This leads us to define a 0–1 variable:

xj( j �1, 2, 3, 4) � �
For example, x2 � 1 if investment 2 is made, and x2 � 0 if investment 2 is not made.

The NPV obtained by Stockco (in thousands of dollars) is

Total NPV obtained by Stockco � 16x1 � 22x2 � 12x3 � 8x4 (5)

To see this, note that if xj � 1, then (5) includes the NPV of investment j, and if xj � 0,
(5) does not include the NPV of investment j. This means that whatever combination of
investments is undertaken, (5) gives the NPV of that combination of projects. For exam-
ple, if Stockco invests in investments 1 and 4, then an NPV of 16,000 � 8,000 � $24,000
is obtained. This combination of investments corresponds to x1 � x4 � 1, x2 � x3 � 0,
so (5) indicates that the NPV for this investment combination is 16(1) � 22(0) �
12(0) � 8(1) � $24 (thousand). This reasoning implies that Stockco’s objective function is

max z � 16x1 � 22x2 � 12x3 � 8x4 (6)

Stockco faces the constraint that at most $14,000 can be invested. By the same reasoning
used to develop (5), we can show that

Total amount invested (in thousands of dollars) � 5x1 � 7x2 � 4x3 � 3x4 (7)

For example, if x1 � 0, x2 � x3 � x4 � 1, then Stockco makes investments 2, 3, and 4.
In this case, Stockco must invest 7 � 4 � 3 � $14 (thousand). Equation (7) yields a to-
tal amount invested of 5(0) � 7(1) � 4(1) � 3(1) � $14 (thousand). Because at most
$14,000 can be invested, x1, x2, x3, and x4 must satisfy

5x1 � 7x2 � 4x3 � 3x4 � 14 (8)

Combining (6) and (8) with the constraints xj � 0 or 1 ( j � 1, 2, 3, 4) yields the fol-
lowing 0–1 IP:

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 4x3 � 3x4 � 14 (9)

xj � 0 or 1 ( j � 1, 2, 3, 4)

R E M A R K S 1 In Section 9.5, we show that the optimal solution to (9) is x1 � 0, x2 � x3 � x4 � 1, z �
$42,000. Hence, Stockco should make investments 2, 3, and 4, but not 1. Investment 1 yields a
higher NPV per dollar invested than any of the others (investment 1 yields $3.20 per dollar invested,
investment 2, $3.14; investment 3, $3; and investment 4, $2.67), so it may seem surprising that in-
vestment 1 is not undertaken. To see why the optimal solution to (9) does not involve making the
“best” investment, note that any investment combination that includes investment 1 cannot use more
than $12,000. This means that using investment 1 forces Stockco to forgo investing $2,000. On the
other hand, the optimal investment combination uses all $14,000 of the investment budget. This en-

if investment j is made

otherwise

1

0

478 C H A P T E R 9 Integer Programming

Capital Budgeting IPE X A M P L E  1



ables the optimal combination to obtain a higher NPV than any combination that includes invest-
ment 1. If, as in Chapter 3, fractional investments were allowed, the optimal solution to (9) would
be x1 � x2 � 1, x3 � 0.50, x4 � 0, z � $44,000, and investment 1 would be used. This simple ex-
ample shows that the choice of modeling a capital budgeting problem as a linear programming or
as an integer programming problem can significantly affect the optimal solution to the problem.
2 Any IP, such as (9), that has only one constraint is referred to as a knapsack problem. Suppose
that Josie Camper is going on an overnight hike. There are four items Josie is considering taking
along on the trip. The weight of each item and the benefit Josie feels she would obtain from each
item are listed in Table 1.

Suppose Josie’s knapsack can hold up to 14 lb of items. For j � 1, 2, 3, 4, define

xj � �
Then Josie can maximize the total benefit by solving (9).

In the following example, we show how the Stockco formulation can be modified to
handle additional constraints.

Modify the Stockco formulation to account for each of the following requirements:

1 Stockco can invest in at most two investments.

2 If Stockco invests in investment 2, they must also invest in investment 1.

3 If Stockco invests in investment 2, they cannot invest in investment 4.

Solution 1 Simply add the constraint

x1 � x2 � x3 � x4 � 2 (10)

to (9). Because any choice of three or four investments will have x1 � x2 � x3 � x4 �
3, (10) excludes from consideration all investment combinations involving three or more
investments. Thus, (10) eliminates from consideration exactly those combinations of in-
vestments that do not satisfy the first requirement.

2 In terms of x1 and x2, this requirement states that if x2 � 1, then x1 must also equal
1. If we add the constraint

x2 � x1 or x2 � x1 � 0 (11)

to (9), then we will have taken care of the second requirement. To show that (11) is equiv-
alent to requirement 2, we consider two possibilities: either x2 � 1 or x2 � 0.

Case 1 x2 � 1. If x2 � 1, then the (11) implies that x1 � 1. Because x1 must equal 0 or
1, this implies that x1 � 1, as required by 2.

1 if Josie takes item j on the hike
0 otherwise
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TA B L E  1
Weights and Benefits for
Items in Josie’s Knapsack

Weight
Item (Pounds) Benefit

1 5 16
2 7 22
3 4 12
4 3 18

Capital Budgeting (Continued)E X A M P L E  2



Case 2 x2 � 0. In this case, (11) reduces to x1 � 0, which allows x1 � 0 or x1 � 1. In
short, if x2 � 0, (11) does not restrict the value of x1. This is also consistent with re-
quirement 2.

In summary, for any value of x2, (11) is equivalent to requirement 2.

3 Simply add the constraint

x2 � x4 � 1 (12)

to (9). We now show that for the two cases x2 � 1 and x2 � 0, (12) is equivalent to the
third requirement.

Case 1 x2 � 1. In this case, we are investing in investment 2, and requirement 3 implies
that Stockco cannot invest in investment 4 (that is, x4 must equal 0). Note that if x2 � 1,
then (12) does imply 1 � x4 � 1, or x4 � 0. Thus, if x2 � 1, then (12) is consistent with
requirement 3.

Case 2 x2 � 0. In this case, requirement 3 does not restrict the value of x4. Note that if
x2 � 0, then (12) reduces to x4 � 1, which also leaves x4 free to equal 0 or 1.

Fixed-Charge Problems

Example 3 illustrates an important trick that can be used to formulate many location and
production problems as IPs.

Gandhi Cloth Company is capable of manufacturing three types of clothing: shirts, shorts,
and pants. The manufacture of each type of clothing requires that Gandhi have the ap-
propriate type of machinery available. The machinery needed to manufacture each type
of clothing must be rented at the following rates: shirt machinery, $200 per week; shorts
machinery, $150 per week; pants machinery, $100 per week. The manufacture of each
type of clothing also requires the amounts of cloth and labor shown in Table 2. Each week,
150 hours of labor and 160 sq yd of cloth are available. The variable unit cost and sell-
ing price for each type of clothing are shown in Table 3. Formulate an IP whose solution
will maximize Gandhi’s weekly profits.

Solution As in LP formulations, we define a decision variable for each decision that Gandhi must
make. Clearly, Gandhi must decide how many of each type of clothing should be manu-
factured each week, so we define

x1 � number of shirts produced each week

x2 � number of shorts produced each week

x3 � number of pants produced each week
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TA B L E  2
Resource Requirements for Gandhi

Clothing Labor Cloth
Type (Hours) (Square Yards)

Shirt 3 4
Shorts 2 3
Pants 6 4



Note that the cost of renting machinery depends only on the types of clothing produced,
not on the amount of each type of clothing. This enables us to express the cost of renting
machinery by using the following variables:

y1 � �
y2 � �
y3 � �

In short, if xj 	 0, then yj � 1, and if xj � 0, then yj � 0. Thus, Gandhi’s weekly profits �
(weekly sales revenue) � (weekly variable costs) � (weekly costs of renting machinery).

Also,

Weekly cost of renting machinery � 200y1 � 150y2 � 100y3 (13)

To justify (13), note that it picks up the rental costs only for the machines needed to man-
ufacture those products that Gandhi is actually manufacturing. For example, suppose that
shirts and pants are manufactured. Then y1 � y3 � 1 and y2 � 0, and the total weekly
rental cost will be 200 � 100 � $300.

Because the cost of renting, say, shirt machinery does not depend on the number of
shirts produced, the cost of renting each type of machinery is called a fixed charge. A
fixed charge for an activity is a cost that is assessed whenever the activity is undertaken
at a nonzero level. The presence of fixed charges will make the formulation of the Gandhi
problem much more difficult.

We can now express Gandhi’s weekly profits as

Weekly profit � (12x1 � 8x2 � 15x3) � (6x1 � 4x2 � 8x3)

� (200y1 � 150y2 � 100y3)

� 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Thus, Gandhi wants to maximize

z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Because its supply of labor and cloth is limited, Gandhi faces the following two constraints:

Constraint 1 At most, 150 hours of labor can be used each week.

Constraint 2 At most, 160 sq yd of cloth can be used each week.

Constraint 1 is expressed by

3x1 � 2x2 � 6x3 � 150 (Labor constraint) (14)

1 if any pants are manufactured

0 otherwise

1 if any shorts are manufactured

0 otherwise

1 if any shirts are manufactured

0 otherwise
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TA B L E  3
Revenue and Cost Information for Gandhi

Clothing Sales Variable
Type Price ($) Cost ($)

Shirt 12 6
Shorts 18 4
Pants 15 8



Constraint 2 is expressed by

4x1 � 3x2 � 4x3 � 160 (Cloth constraint) (15)

Observe that xj 	 0 and xj integer ( j � 1, 2, 3) must hold along with yj � 0 or 1 ( j �
1, 2, 3). Combining (14) and (15) with these restrictions and the objective function yields
the following IP:

max z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

s.t. 3x1 � 2x2 � 6x3 � 150

s.t. 4x1 � 3x2 � 4x3 � 160 (IP 1)

s.t. 3x1 � x1, x2, x3 � 0; x1, x2, x3 integer

s.t. 3x1 � y1, y2, y3 � 0 or 1

The optimal solution to this problem is found to be x1 � 30, x3 � 10, x2 � y1 � y2 �
y3 � 0. This cannot be the optimal solution to Gandhi’s problem because it indicates that
Gandhi can manufacture shirts and pants without incurring the cost of renting the needed
machinery. The current formulation is incorrect because the variables y1, y2, and y3 are
not present in the constraints. This means that there is nothing to stop us from setting 
y1 � y2 � y3 � 0. Setting yi � 0 is certainly less costly than setting yi � 1, so a minimum-
cost solution to (IP 1) will always set yi � 0. Somehow we must modify (IP 1) so that
whenever xi 	 0, yi � 1 must hold. The following trick will accomplish this goal. Let M1,
M2, and M3 be three large positive numbers, and add the following constraints to (IP 1):

x1 � M1y1 (16)

x2 � M2y2 (17)

x3 � M3y3 (18)

Adding (16)–(18) to IP 1 will ensure that if xi 	 0, then yi � 1. To illustrate, let us show
that (16) ensures that if x1 	 0, then y1 � 1. If x1 	 0, then y1 cannot be 0. For if y1 �
0, then (16) would imply x1 � 0 or x1 � 0. Thus, if x1 	 0, y1 � 1 must hold. If any
shirts are produced (x1 	 0), (16) ensures that y1 � 1, and the objective function will in-
clude the cost of the machinery needed to manufacture shirts. Note that if y1 � 1, then
(16) becomes x1 � M1, which does not unnecessarily restrict the value of x1. If M1 were
not chosen large, however (say, M1 � 10), then (16) would unnecessarily restrict the value
of x1. In general, Mi should be set equal to the maximum value that xi can attain. In the
current problem, at most 40 shirts can be produced (if Gandhi produced more than 40
shirts, the company would run out of cloth), so we can safely choose M1 � 40. The reader
should verify that we can choose M2 � 53 and M3 � 25.

If x1 � 0, (16) becomes 0 � M1y1. This allows either y1 � 0 or y1 � 1. Because y1 �
0 is less costly than y1 � 1, the optimal solution will choose y1 � 0 if x1 � 0. In sum-
mary, we have shown that if (16)–(18) are added to (IP 1), then xi 	 0 will imply yi � 1,
and xi � 0 will imply yi � 0.

The optimal solution to the Gandhi problem is z � $75, x3 � 25, y3 � 1. Thus, Gandhi
should produce 25 pants each week.

The Gandhi problem is an example of a fixed-charge problem. In a fixed-charge prob-
lem, there is a cost associated with performing an activity at a nonzero level that does not
depend on the level of the activity. Thus, in the Gandhi problem, if we make any shirts at
all (no matter how many we make), we must pay the fixed charge of $200 to rent a shirt
machine. Problems in which a decision maker must choose where to locate facilities are
often fixed-charge problems. The decision maker must choose where to locate various fa-
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cilities (such as plants, warehouses, or business offices), and a fixed charge is often asso-
ciated with building or operating a facility. Example 4 is a typical location problem in-
volving the idea of a fixed charge.

J. C. Nickles receives credit card payments from four regions of the country (West, Mid-
west, East, and South). The average daily value of payments mailed by customers from
each region is as follows: the West, $70,000; the Midwest, $50,000; the East, $60,000;
the South, $40,000. Nickles must decide where customers should mail their payments. Be-
cause Nickles can earn 20% annual interest by investing these revenues, it would like to
receive payments as quickly as possible. Nickles is considering setting up operations to
process payments (often referred to as lockboxes) in four different cities: Los Angeles,
Chicago, New York, and Atlanta. The average number of days (from time payment is sent)
until a check clears and Nickles can deposit the money depends on the city to which the
payment is mailed, as shown in Table 4. For example, if a check is mailed from the West
to Atlanta, it would take an average of 8 days before Nickles could earn interest on the
check. The annual cost of running a lockbox in any city is $50,000. Formulate an IP that
Nickles can use to minimize the sum of costs due to lost interest and lockbox operations.
Assume that each region must send all its money to a single city and that there is no limit
on the amount of money that each lockbox can handle.

Solution Nickles must make two types of decisions. First, Nickles must decide where to operate
lockboxes. We define, for j � 1, 2, 3, 4,

yj � �
Thus, y2 � 1 if a lockbox is operated in Chicago, and y3 � 0 if no lockbox is operated
in New York. Second, Nickles must determine where each region of the country should
send payments. We define (for i, j � 1, 2, 3, 4)

xij � �
For example, x12 � 1 if the West sends payments to Chicago, and x23 � 0 if the Midwest
does not send payments to New York.

Nickles wants to minimize (total annual cost) � (annual cost of operating lockboxes) �
(annual lost interest cost). To determine how much interest Nickles loses annually, we
must determine how much revenue would be lost if payments from region i were sent 
to region j. For example, how much in annual interest would Nickles lose if customers
from the West region sent payments to New York? On any given day, 8 days’ worth, or
8(70,000) � $560,000 of West payments will be in the mail and will not be earning in-

1 if region i sends payments to city j

0 otherwise

1 if a lockbox is operated in city j

0 otherwise
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The Lockbox ProblemE X A M P L E  4

TA B L E  4
Average Number of Days from Mailing of Payment Until Payment Clears

To

City 1 City 2 City 3 City 4
From (Los Angeles) (Chicago) (New York) (Atlanta)

Region 1 West 2 6 8 8
Region 2 Midwest 6 2 5 5
Region 3 East 8 5 2 5
Region 4 South 8 5 5 2



terest. Because Nickles can earn 20% annually, each year West funds will result in
0.20(560,000) � $112,000 in lost interest. Similar calculations for the annual cost of lost
interest for each possible assignment of a region to a city yield the results shown in Table
5. The lost interest cost from sending region i’s payments to city j is only incurred if 
xij � 1, so Nickles’s annual lost interest costs (in thousands) are

Annual lost interest costs � 28x11 � 84x12 � 112x13 � 112x14

Annual lost interest costs � � 60x21 � 20x22 � 50x23 � 50x24

Annual lost interest costs � � 96x31 � 60x32 � 24x33 � 60x34

Annual lost interest costs � � 64x41 � 40x42 � 40x43 � 16x44

The cost of operating a lockbox in city i is incurred if and only if yi � 1, so the an-
nual lockbox operating costs (in thousands) are given by

Total annual lockbox operating cost � 50y1 � 50y2 � 50y3 � 50y4

Thus, Nickles’s objective function may be written as

min z � 28x11 � 84x12 � 112x13 � 112x14

min z � � 60x21 � 20x22 � 50x23 � 50x24

min z � � 96x31 � 60x32 � 24x33 � 60x34 (19)

min z � � 64x41 � 40x42 � 40x43 � 16x44

� 50y1 � 50y2 � 50y3 � 50y4

Nickles faces two types of constraints.

Type 1 Constraint Each region must send its payments to a single city.

Type 2 Constraint If a region is assigned to send its payments to a city, that city must have
a lockbox.

484 C H A P T E R 9 Integer Programming

TA B L E  5
Calculation of Annual Lost Interest

Annual Lost
Assignment Interest Cost ($)

West to L.A. 0.20(70,000)2 � 28,000
West to Chicago 0.20(70,000)6 � 84,000
West to N.Y. 0.20(70,000)8 � 112,000
West to Atlanta 0.20(70,000)8 � 112,000
Midwest to L.A. 0.20(50,000)6 � 60,000
Midwest to Chicago 0.20(50,000)2 � 20,000
Midwest to N.Y. 0.20(50,000)5 � 50,000
Midwest to Atlanta 0.20(50,000)5 � 50,000
East to L.A. 0.20(60,000)8 � 96,000
East to Chicago 0.20(60,000)5 � 60,000
East to N.Y. 0.20(60,000)2 � 24,000
East to Atlanta 0.20(60,000)5 � 60,000
South to L.A. 0.20(40,000)8 � 64,000
South to Chicago 0.20(40,000)5 � 40,000
South to N.Y 0.20(40,000)5 � 40,000
South to Atlanta 0.20(40,000)2 � 16,000



The type 1 constraints state that for region i (i � 1, 2, 3, 4) exactly one of xi1, xi2, xi3,
and xi4 must equal 1 and the others must equal 0. This can be accomplished by including
the following four constraints:

x11 � x12 � x13 � x14 � 1 (West region constraint) (20)

x21 � x22 � x23 � x24 � 1 (Midwest region constraint) (21)

x31 � x32 � x33 � x34 � 1 (East region constraint) (22)

x41 � x42 � x43 � x44 � 1 (South region constraint) (23)

The type 2 constraints state that if

xij � 1 (that is, customers in region i send payments to city j) (24)

then yj must equal 1. For example, suppose x12 � 1. Then there must be a lockbox at city
2, so y2 � 1 must hold. This can be ensured by adding 16 constraints of the form

xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)

If xij � 1, then (25) ensures that yj � 1, as desired. Also, if x1j � x2j � x3j � x4j � 0,
then (25) allows yj � 0 or yj � 1. As in the fixed-charge example, the act of minimizing
costs will result in yj � 0. In summary, the constraints in (25) ensure that Nickles pays
for a lockbox at city i if it uses a lockbox at city i.

Combining (19)–(23) with the 4(4) � 16 constraints in (25) and the 0–1 restrictions
on the variables yields the following formulation:

min z � 28x11 � 84x12 � 112x13 � 112x14 � 60x21 � 20x22 � 50x23 � 50x24

min z �� 96x31 � 60x32 � 24x33 � 60x34 � 64x41 � 40x42 � 40x43 � 16x44

min z �� 50y1 � 50y2 � 50y3 � 50y4

s.t. x11 � x12 � x13 � x14 � 1 (West region constraint)

s.t. x21 � x22 � x23 � x24 � 1 (Midwest region constraint)

s.t. x31 � x32 � x33 � x34 � 1 (East region constraint)

s.t. x41 � x42 � x43 � x44 � 1 (South region constraint)

s.t. x11 � y1, x21 � y1, x31 � y1, x41 � y1, x12 � y2, x22 � y2, x32 � y2, x42 � y2,

s.t. x13 � y3, x23 � y3, x33 � y3, x43 � y3, x14 � y4, x24 � y4, x34 � y4, x44 � y4

All xij and yj � 0 or 1

The optimal solution is z � 242, y1 � 1, y3 � 1, x11 � 1, x23 � 1, x33 � 1, x43 � 1.
Thus, Nickles should have a lockbox operation in Los Angeles and New York. West cus-
tomers should send payments to Los Angeles, and all other customers should send pay-
ments to New York.

There is an alternative way of modeling the Type 2 constraints. Instead of the 16 con-
straints of the form xij � yj, we may include the following four constraints:

x11 � x21 � x31 � x41 � 4y1 (Los Angeles constraint)

x12 � x22 � x32 � x42 � 4y2 (Chicago constraint)

x13 � x23 � x33 � x43 � 4y3 (New York constraint)

x14 � x24 � x34 � x44 � 4y4 (Atlanta constraint)

For the given city, each constraint ensures that if the lockbox is used, then Nickles must
pay for it. For example, consider x14 � x24 � x34 � x44 � 4y4. The lockbox in Atlanta is
used if x14 � 1, x24 � 1, x34 � 1, or x44 � 1. If any of these variables equals 1, then the
Atlanta constraint ensures that y4 � 1, and Nickles must pay for the lockbox. If all these
variables are 0, then the act of minimizing costs will cause y4 � 0, and the cost of the At-
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lanta lockbox will not be incurred. Why does the right-hand side of each constraint equal
4? This ensures that for each city, it is possible to send money from all four regions to
the city. In Section 9.3, we discuss which of the two alternative formulations of the lock-
box problem is easier for a computer to solve. The answer may surprise you!

Set-Covering Problems

The following example is typical of an important class of IPs known as set-covering problems.

There are six cities (cities 1–6) in Kilroy County. The county must determine where to
build fire stations. The county wants to build the minimum number of fire stations needed
to ensure that at least one fire station is within 15 minutes (driving time) of each city. The
times (in minutes) required to drive between the cities in Kilroy County are shown in
Table 6. Formulate an IP that will tell Kilroy how many fire stations should be built and
where they should be located.

Solution For each city, Kilroy must determine whether to build a fire station there. We define the
0–1 variables x1, x2, x3, x4, x5, and x6 by

xi � �
Then the total number of fire stations that are built is given by x1 � x2 � x3 � x4 �
x5 � x6, and Kilroy’s objective function is to minimize

z � x1 � x2 � x3 � x4 � x5 � x6

What are Kilroy’s constraints? Kilroy must ensure that there is a fire station within 15
minutes of each city. Table 7 indicates which locations can reach the city in 15 minutes
or less. To ensure that at least one fire station is within 15 minutes of city 1, we add the
constraint

x1 � x2 � 1 (City 1 constraint)

This constraint ensures that x1 � x2 � 0 is impossible, so at least one fire station will be
built within 15 minutes of city 1. Similarly the constraint

x1 � x2 � x6 � 1 (City 2 constraint)

ensures that at least one fire station will be located within 15 minutes of city 2. In a sim-
ilar fashion, we obtain constraints for cities 3–6. Combining these six constraints with the

1 if a fire station is built in city i

0 otherwise
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Facility-Location Set-Covering ProblemE X A M P L E  5

TA B L E  6
Time Required to Travel between Cities in Kilroy County

To

From City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20
City 2 10 0 25 35 20 10
City 3 20 25 0 15 30 20
City 4 30 35 15 0 15 25
City 5 30 20 30 15 0 14
City 6 20 10 20 25 14 0



objective function (and with the fact that each variable must equal 0 or 1), we obtain the
following 0–1 IP:

min z � x1 � x2 � x3 � x4 � x5 � x6

s.t. x1 � x2 � x3 � x4 � x5 � x5 � 1 (City 1 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 2 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 3 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 4 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 5 constraint)

s.t. x1 � x2 x2 � x3 � � x5 � x6 � 1 (City 6 constraint)

xi � 0 or 1 (i � 1, 2, 3, 4, 5, 6)

One optimal solution to this IP is z � 2, x2 � x4 � 1, x1 � x3 � x5 � x6 � 0. Thus, Kil-
roy County can build two fire stations: one in city 2 and one in city 4.

As noted, Example 5 represents a class of IPs known as set-covering problems. In a
set-covering problem, each member of a given set (call it set 1) must be “covered” by an
acceptable member of some set (call it set 2). The objective in a set-covering problem is
to minimize the number of elements in set 2 that are required to cover all the elements in
set 1. In Example 5, set 1 is the cities in Kilroy County, and set 2 is the set of fire sta-
tions. The station in city 2 covers cities 1, 2, and 6, and the station in city 4 covers cities
3, 4, and 5. Set-covering problems have many applications in areas such as airline crew
scheduling, political districting, airline scheduling, and truck routing.

Either–Or Constraints

The following situation commonly occurs in mathematical programming problems. We
are given two constraints of the form

f (x1, x2, . . . , xn) � 0 (26)

g(x1, x2, . . . , xn) � 0 (27)

We want to ensure that at least one of (26) and (27) is satisfied, often called either–or
constraints. Adding the two constraints (26�) and (27�) to the formulation will ensure that
at least one of (26) and (27) is satisfied:

f (x1, x2, . . . , xn) � My (26�)

g(x1, x2, . . . , xn) � M(1 � y) (27�)
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TA B L E  7
Cities within 15 Minutes of
Given City

City Within 15 Minutes

1 1, 2
2 1, 2, 6
3 3, 4
4 3, 4, 5
5 4, 5, 6
6 2, 5, 6



In (26�) and (27�), y is a 0–1 variable, and M is a number chosen large enough to en-
sure that f (x1, x2, . . . , xn) � M and g(x1, x2, . . . , xn) � M are satisfied for all values of
x1, x2, . . . , xn that satisfy the other constraints in the problem.

Let us show that the inclusion of constraints (26�) and (27�) is equivalent to at least
one of (26) and (27) being satisfied. Either y � 0 or y � 1. If y � 0, then (26�) and (27�)
become f � 0 and g � M. Thus, if y � 0, then (26) (and possibly (27)) must be satisfied.
Similarly, if y � 1, then (26�) and (27�) become f � M and g � 0. Thus, if y � 1, then
(27) (and possibly (26)) must be satisfied. Therefore, whether y � 0 or y � 1, (26�) and
(27�) ensure that at least one of (26) and (27) is satisfied.

The following example illustrates the use of either–or constraints.

Dorian Auto is considering manufacturing three types of autos: compact, midsize, and
large. The resources required for, and the profits yielded by, each type of car are shown
in Table 8. Currently, 6,000 tons of steel and 60,000 hours of labor are available. For pro-
duction of a type of car to be economically feasible, at least 1,000 cars of that type must
be produced. Formulate an IP to maximize Dorian’s profit.

Solution Because Dorian must determine how many cars of each type should be built, we define

x1 � number of compact cars produced

x2 � number of midsize cars produced

x3 � number of large cars produced

Then contribution to profit (in thousands of dollars) is 2x1 � 3x2 � 4x3, and Dorian’s ob-
jective function is

max z � 2x1 � 3x2 � 4x3

We know that if any cars of a given type are produced, then at least 1,000 cars of that
type must be produced. Thus, for i � 1, 2, 3, we must have xi � 0 or xi � 1,000. Steel
and labor are limited, so Dorian must satisfy the following five constraints:

Constraint 1 x1 � 0 or x1 � 1,000.

Constraint 2 x2 � 0 or x2 � 1,000.

Constraint 3 x3 � 0 or x3 � 1,000.

Constraint 4 The cars produced can use at most 6,000 tons of steel.

Constraint 5 The cars produced can use at most 60,000 hours of labor.
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Either–Or ConstraintE X A M P L E  6

TA B L E  8
Resources and Profits for Three Types of Cars

Car Type

Resource Compact Midsize Large

Steel required 1.5 tons 3 tons 5 tons
Labor required 30 hours 25 hours 40 hours

Profit yielded ($) 2,000 3,000 4,000



From our previous discussion, we see that if we define f (x1, x2, x3) � x1 and g(x1, x2,
x3) � 1,000 � x1, we can replace Constraint 1 by the following pair of constraints:

x1 � M1y1

1,000 � x1 � M1(1 � y1)

y1 � 0 or 1

To ensure that both x1 and 1,000 � x1 will never exceed M1, it suffices to choose M1 large
enough so that M1 exceeds 1,000 and x1 is always less than M1. Building �60

3
,0
0
00

� � 2,000
compacts would use all available labor (and still leave some steel), so at most 2,000 com-
pacts can be built. Thus, we may choose M1 � 2,000. Similarly, Constraint 2 may be re-
placed by the following pair of constraints:

x2 � M2 y2

1,000 � x2 � M2(1 � y2)

y2 � 0 or 1

You should verify that M2 � 2,000 is satisfactory. Similarly, Constraint 3 may be replaced by

x3 � M3y3

1,000 � x3 � M3(1 � y3)

y3 � 0 or 1

Again, you should verify that M3 � 1,200 is satisfactory. Constraint 4 is a straightforward
resource constraint that reduces to

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

Constraint 5 is a straightforward resource usage constraint that reduces to

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

After noting that xi � 0 and that xi must be an integer, we obtain the following IP:

max z � 2x1 � 3x2 � 4x3

s.t. 1,000 � x1 � 2,000y1

s.t. 1,000 � x1 � 2,000(1 � y1)

s.t. 1,000 � x2 � 2,000y2

s.t. 1,000 � x2 � 2,000(1 � y2)

s.t. 1,000 � x3 � 1,200y3

s.t. 1,000 � x3 � 1,200(1 � y3)

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

x1, x2, x3 � 0; x1, x2, x3 integer

y1, y2, y3 � 0 or 1

The optimal solution to the IP is z � 6,000, x2 � 2,000, y2 � 1, y1 � y3 � x1 � x3 � 0.
Thus, Dorian should produce 2,000 midsize cars. If Dorian had not been required to man-
ufacture at least 1,000 cars of each type, then the optimal solution would have been to
produce 570 compacts and 1,715 midsize cars.
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If–Then Constraints

In many applications, the following situation occurs: We want to ensure that if a constraint
f (x1, x2, . . . , xn) 	 0 is satisfied, then the constraint g(x1, x2, . . . , xn) � 0 must be satis-
fied, while if f (x1, x2, . . . , xn) 	 0 is not satisfied, then g(x1, x2, . . . , xn) � 0 may or may
not be satisfied. In short, we want to ensure that f (x1, x2, . . . , xn) 	 0 implies g(x1, x2,
. . . , xn) � 0.

To ensure this, we include the following constraints in the formulation:

�g(x1, x2, . . . , xn) � My (28)

f (x1, x2, . . . , xn) � M(1 � y) (29)

y � 0 or 1

As usual, M is a large positive number. (M must be chosen large enough so that f � M
and �g � M hold for all values of x1, x2, . . . , xn that satisfy the other constraints in the
problem.) Observe that if f 	 0, then (29) can be satisfied only if y � 0. Then (28) im-
plies �g � 0, or g � 0, which is the desired result. Thus, if f 	 0, then (28) and (29) en-
sure that g � 0. Also, if f 	 0 is not satisfied, then (29) allows y � 0 or y � 1. By choos-
ing y � 1, (28) is automatically satisfied. Thus, if f 	 0 is not satisfied, then the values
of x1, x2, . . . , xn are unrestricted and g 
 0 or g � 0 are both possible.

To illustrate the use of this idea, suppose we add the following constraint to the Nickles lock-
box problem: If customers in region 1 send their payments to city 1, then no other customers
may send their payments to city 1. Mathematically, this restriction may be expressed by

If x11 � 1, then x21 � x31 � x41 � 0 (30)

Because all xij must equal 0 or 1, (30) may be written as

If x11 	 0, then x21 � x31 � x41 � 0, or �x21 � x31 � x41 � 0 (30�)

If we define f � x11 and g � �x21 � x31 � x41, we can use (28) and (29) to express (30�)
[and therefore (30)] by the following two constraints:

x21 � x31 � x41 � My

x11 � M(1 � y)

y � 0 or 1

Because �g and f can never exceed 3, we can choose M � 3 and add the following con-
straints to the original lockbox formulation:

x21 � x31 � x41 � 3y

x11 � 3(1 � y)

y � 0 or 1

Integer Programming and Piecewise Linear Functions†

The next example shows how 0–1 variables can be used to model optimization problems
involving piecewise linear functions. A piecewise linear function consists of several
straight-line segments. The piecewise linear function in Figure 2 is made of four straight-
line segments. The points where the slope of the piecewise linear function changes (or the
range of definition of the function ends) are called the break points of the function. Thus,
0, 10, 30, 40, and 50 are the break points of the function pictured in Figure 2.
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To illustrate why piecewise linear functions can occur in applications, suppose we
manufacture gasoline from oil. In purchasing oil from our supplier, we receive a quantity
discount. The first 500 gallons of oil purchased cost 25¢ per gallon; the next 500 gallons
cost 20¢ per gallon; and the next 500 gallons cost 15¢ per gallon. At most, 1,500 gallons
of oil can be purchased. Let x be the number of gallons of oil purchased and c(x) be the
cost (in cents) of purchasing x gallons of oil. For x � 0, c(x) � 0. Then for 0 � x � 500,
c(x) � 25x. For 500 � x � 1,000, c(x) � (cost of purchasing first 500 gallons at 25¢ per
gallon) � (cost of purchasing next x � 500 gallons at 20¢ per gallon) � 25(500) �
20(x � 500) � 20x � 2,500. For 1,000 � x � 1,500, c(x) � (cost of purchasing first
1,000 gallons) � (cost of purchasing next x � 1,000 gallons at 15¢ per gallon) �
c(1,000) � 15(x � 1,000) � 7,500 � 15x. Thus, c(x) has break points 0, 500, 1,000, and
1,500 and is graphed in Figure 3.

A piecewise linear function is not a linear function, so one might think that linear pro-
gramming could not be used to solve optimization problems involving these functions. By
using 0–1 variables, however, piecewise linear functions can be represented in linear form.
Suppose that a piecewise linear function f (x) has break points b1, b2, . . . , bn. For some k
(k � 1, 2, . . . , n � 1), bk � x � bk�1. Then, for some number zk (0 � zk � 1), x may
be written as

x � zkbk � (1 � zk)bk�1

Because f (x) is linear for bk � x � bk�1, we may write

f (x) � zk f (bk) � (1 � zk) f (bk�1)
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To illustrate the idea, take x � 800 in our oil example. Then we have b2 � 500 � 800 �
1,000 � b3, and we may write

x � �
2
5

�(500) � �
3
5

�(1,000)

f (x) � f (800) � �
2
5

� f (500) � �
3
5

� f (1,000)

� �
2
5

�(12,500) � �
3
5

�(22,500) � 18,500

We are now ready to describe the method used to express a piecewise linear function
via linear constraints and 0–1 variables:

Step 1 Wherever f(x) occurs in the optimization problem, replace f (x) by z1 f (b1) �
z2 f (b2) � ��� � zn f (bn).

Step 2 Add the following constraints to the problem:

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, . . . , zn�1 � yn�2 � yn�1, zn � yn�1

y1 � y2 � ��� � yn�1 � 1

z1 � z2 � ��� � zn � 1

x � z1b1 � z2b2 � ��� � znbn

yi � 0 or 1 (i � 1, 2, . . . , n � 1); zi � 0 (i � 1, 2, . . . , n)

Euing Gas produces two types of gasoline (gas 1 and gas 2) from two types of oil (oil 1
and oil 2). Each gallon of gas 1 must contain at least 50 percent oil 1, and each gallon of
gas 2 must contain at least 60 percent oil 1. Each gallon of gas 1 can be sold for 12¢, and
each gallon of gas 2 can be sold for 14¢. Currently, 500 gallons of oil 1 and 1,000 gal-
lons of oil 2 are available. As many as 1,500 more gallons of oil 1 can be purchased at
the following prices: first 500 gallons, 25¢ per gallon; next 500 gallons, 20¢ per gallon;
next 500 gallons, 15¢ per gallon. Formulate an IP that will maximize Euing’s profits (rev-
enues � purchasing costs).

Solution Except for the fact that the cost of purchasing additional oil 1 is a piecewise linear func-
tion, this is a straightforward blending problem. With this in mind, we define

x � amount of oil 1 purchased

xij � amount of oil i used to produce gas j (i, j � 1, 2)

Then (in cents)

Total revenue � cost of purchasing oil 1 � 12(x11 � x21) � 14(x12 � x22) � c(x)

As we have seen previously,

c(x) � �
Thus, Euing’s objective function is to maximize

z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

Euing faces the following constraints:

Constraint 1 Euing can use at most x � 500 gallons of oil 1.

Constraint 2 Euing can use at most 1,000 gallons of oil 2.

Constraint 3 The oil mixed to make gas 1 must be at least 50% oil 1.

(0 � x � 500)

(500 � x � 1,000)

(1,000 � x � 1,500)

25x

20x � 2,500

15x � 7,500
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Constraint 4 The oil mixed to make gas 2 must be at least 60% oil 1.

Constraint 1 yields

x11 � x12 � x � 500

Constraint 2 yields

x21 � x22 � 1,000

Constraint 3 yields

�
x11

x
�
11

x21
� � 0.5 or 0.5x11 � 0.5x21 � 0

Constraint 4 yields

�
x12

x
�
12

x22
� � 0.6 or 0.4x12 � 0.6x22 � 0

Also all variables must be nonnegative. Thus, Euing Gas must solve the following opti-
mization problem:

max z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x12 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x12 � 0

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x22 � 0

max z � 12xij � 0, 0 � x � 1,500

Because c(x) is a piecewise linear function, the objective function is not a linear func-
tion of x, and this optimization is not an LP. By using the method described earlier, how-
ever, we can transform this problem into an IP. After recalling that the break points for
c(x) are 0, 500, 1,000, and 1,500, we proceed as follows:

Step 1 Replace c(x) by c(x) � z1c(0) � z2c(500) � z3c(1,000) � z4c(1,500).

Step 2 Add the following constraints:

x � 0z1 � 500z2 � 1,000z3 � 1,500z4

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, z4 � y3

z1 � z2 � z3 � z4 � 1, y1 � y2 � y3 � 1

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

Our new formulation is the following IP:

max z � 12x11 � 12x21 � 14x12 � 14x22 � z1c(0) � z2c(500)

max z � � z3c(1,000) � z4c(1,500)

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

x � 0z1 � 500z2 � 1,000z3 � 1,500z4 (31)

z1 � y1 (32)

z2 � y1 � y2 (33)

z3 � y2 � y3 (34)
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z4 � y3 (35)

y1 � y2 � y3 � 1 (36)

z1 � z2 � z3 � z4 � 1 (37)

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

xij � 0

To see why this formulation works, observe that because y1 � y2 � y3 � 1 and yi � 0 or
1, exactly one of the yi’s will equal 1, and the others will equal 0. Now, (32)–(37) imply
that if yi � 1, then zi and zi�1 may be positive, but all the other zi’s must equal 0. For in-
stance, if y2 � 1, then y1� y3 � 0. Then (32)–(35) become z1 � 0, z2 � 1, z3 � 1, and
z4 � 0. These constraints force z1 � z4 � 0 and allow z2 and z3 to be any nonnegative
number less than or equal to 1. We can now show that (31)–(37) correctly represent the
piecewise linear function c(x). Choose any value of x, say x � 800. Note that b2 � 500 �
800 � 1,000 � b3. For x � 800, what values do our constraints assign to y1, y2, and y3?
The value y1 � 1 is impossible, because if y1 � 1, then y2 � y3 � 0. Then (34)–(35) force
z3 � z4 � 0. Then (31) reduces to 800 � x � 500z2, which cannot be satisfied by z2 � 1.
Similarly, y3 � 1 is impossible. If we try y2 � 1 (32) and (35) force z1 � z4 � 0. Then
(33) and (34) imply z2 � 1 and z3 � 1. Now (31) becomes 800 � x � 500z2 � 1,000z3.
Because z2 � z3 � 1, we obtain z2 � �

2
5

� and z3 � �
3
5

�. Now the objective function reduces to

12x11 � 12x21 � 14x21 � 14x22 � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

Because

c(800) � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

our objective function yields the correct value of Euing’s profits!
The optimal solution to Euing’s problem is z � 12,500, x � 1,000, x12 � 1,500, 

x22 � 1,000, y3 � z3 � 1. Thus, Euing should purchase 1,000 gallons of oil 1 and pro-
duce 2,500 gallons of gas 2.

In general, constraints of the form (31)–(37) ensure that if bi � x � bi�1, then yi � 1
and only zi and zi�1 can be positive. Because c(x) is linear for bi � x � bi�1, the objec-
tive function will assign the correct value to c(x).

If a piecewise linear function f (x) involved in a formulation has the property that the
slope of f (x) becomes less favorable to the decision maker as x increases, then the tedious
IP formulation we have just described is unnecessary.

Dorian Auto has a $20,000 advertising budget. Dorian can purchase full-page ads in two
magazines: Inside Jocks (IJ) and Family Square (FS). An exposure occurs when a person
reads a Dorian Auto ad for the first time. The number of exposures generated by each 
ad in IJ is as follows: ads 1–6, 10,000 exposures; ads 7–10, 3,000 exposures; ads 
11–15, 2,500 exposures; ads 16�, 0 exposures. For example, 8 ads in IJ would generate
6(10,000) � 2(3,000) � 66,000 exposures. The number of exposures generated by each
ad in FS is as follows: ads 1–4, 8,000 exposures; ads 5–12, 6,000 exposures; ads 13–15,
2,000 exposures; ads 16�, 0 exposures. Thus, 13 ads in FS would generate 4(8,000) �
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8(6,000) � 1(2,000) � 82,000 exposures. Each full-page ad in either magazine costs
$1,000. Assume there is no overlap in the readership of the two magazines. Formulate an
IP to maximize the number of exposures that Dorian can obtain with limited advertising
funds.

Solution If we define

x1 � number of IJ ads yielding 10,000 exposures

x2 � number of IJ ads yielding 3,000 exposures

x3 � number of IJ ads yielding 2,500 exposures

y1 � number of FS ads yielding 8,000 exposures

y2 � number of FS ads yielding 6,000 exposures

y3 � number of FS ads yielding 2,000 exposures

then the total number of exposures (in thousands) is given by

10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Thus, Dorian wants to maximize

z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Because the total amount spent (in thousands) is just the toal number of ads placed in
both magazines, Dorian’s budget constraint may be written as

x1 � x2 � x3 � y1 � y2 � y3 � 20

The statement of the problem implies that x1 � 6, x2 � 4, x3 � 5, y1 � 4, y2 � 8, and
y3 � 3 all must hold. Adding the sign restrictions on each variable and noting that each
variable must be an integer, we obtain the following IP:

max z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

Observe that the statement of the problem implies that x2 cannot be positive unless x1 as-
sumes its maximum value of 6. Similarly, x3 cannot be positive unless x2 assumes its max-
imum value of 4. Because x1 ads generate more exposures than x2 ads, however, the act
of maximizing ensures that x2 will be positive only if x1 has been made as large as pos-
sible. Similarly, because x3 ads generate fewer exposures than x2 ads, x3 will be positive
only if x2 assumes its maximum value. (Also, y2 will be positive only if y1 � 4, and y3

will be positive only if y2 � 8.)
The optimal solution to Dorian’s IP is z � 146,000, x1 � 6, x2 � 2, y1 � 4, y2 � 8, 

x3 � 0, y3 � 0. Thus, Dorian will place x1 � x2 � 8 ads in IJ and y1 � y2 � 12 ads in FS.
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In Example 8, additional advertising in a magazine yielded diminishing returns. This
ensured that xi ( yi) would be positive only if xi�1 (yi�1) assumed its maximum value. If
additional advertising generated increasing returns, then this formulation would not yield
the correct solution. For example, suppose that the number of exposures generated by
each IJ ad was as follows: ads 1–6, 2,500 exposures; ads 7–10, 3,000 exposures; ads
11–15, 10,000 exposures. Suppose also that the number of exposures generated by each
FS is as follows: ads 1–4, 2,000 exposures; ads 5–12, 6,000 exposures; ads 13–15, 8,000
exposures.

If we define

x1 � number of IJ ads generating 2,500 exposures

x2 � number of IJ ads generating 3,000 exposures

x3 � number of IJ ads generating 10,000 exposures

y1 � number of FS ads generating 2,000 exposures

y2 � number of FS ads generating 6,000 exposures

y3 � number of FS ads generating 8,000 exposures

the reasoning used in the previous example would lead to the following formulation:

max z � 2.5x1 � 3x2 � 10x3 � 2y1 � 6y2 � 8y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

The optimal solution to this IP is x3 � 5, y3 � 3, y2 � 8, x2 � 4, x1 � 0, y1 � 0,
which cannot be correct. According to this solution, x1 � x2 � x3 � 9 ads should be
placed in IJ. If 9 ads were placed in IJ, however, then it must be that x1 � 6 and x2 � 3.
Therefore, we see that the type of formulation used in the Dorian Auto example is cor-
rect only if the piecewise linear objective function has a less favorable slope for larger
values of x. In our second example, the effectiveness of an ad increased as the number of
ads in a magazine increased, and the act of maximizing will not ensure that xi can be pos-
itive only if xi�1 assumes its maximum value. In this case, the approach used in the Eu-
ing Gas example would yield a correct formulation (see Problem 8).

Solving IPs with LINDO

LINDO can be used to solve pure or mixed IPs. In addition to the optimal solution, the
LINDO output for an IP gives shadow prices and reduced costs. Unfortunately, the
shadow prices and reduced costs refer to subproblems generated during the branch-and-
bound solution—not to the IP. Unlike linear programming, there is no well-developed the-
ory of sensitivity analysis for integer programming. The reader interested in a discussion
of sensitivity analysis for IPs should consult Williams (1985).
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9.3 The Branch-and-Bound Method for Solving 
Pure Integer Programming Problems
In practice, most IPs are solved by using the technique of branch-and-bound. Branch-and-
bound methods find the optimal solution to an IP by efficiently enumerating the points in
a subproblem’s feasible region. Before explaining how branch-and-bound works, we need
to make the following elementary but important observation: If you solve the LP relax-
ation of a pure IP and obtain a solution in which all variables are integers, then the op-
timal solution to the LP relaxation is also the optimal solution to the IP.

To see why this observation is true, consider the following IP:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 6

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation of this pure IP is x1 � 0, x2 � 6, z � 12. Be-
cause this solution gives integer values to all variables, the preceding observation implies
that x1 � 0, x2 � 6, z � 12 is also the optimal solution to the IP. Observe that the feasi-
ble region for the IP is a subset of the points in the LP relaxation’s feasible region (see
Figure 10). Thus, the optimal z-value for the IP cannot be larger than the optimal z-value
for the LP relaxation. This means that the optimal z-value for the IP must be � 12. But
the point x1 � 0, x2 � 6, z � 12 is feasible for the IP and has z � 12. Thus, x1 � 0, 
x2 � 6, z � 12 must be optimal for the IP.

TA B L E  54

Unit Profit
Product Demand Contribution ($) Fixed Charge ($)

1 40 2 30
2 60 5 40
3 65 6 50
4 70 7 60
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Product

Resource Usage 1 2 3 4

1 1 2 3.5 4
2 5 6 7.5 9
3 3 4 5.5 6
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x1
1

1

= IP feasible point
= IP relaxation,s feasible region

2 3

2

3

4

5

6

F I G U R E  10
Feasible Region for 

an IP and Its 
LP Relaxation



The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor
and 9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board
feet of wood. Currently, 6 hours of labor and 45 square board feet of wood are available.
Each table contributes $8 to profit, and each chair contributes $5 to profit. Formulate and
solve an IP to maximize Telfa’s profit.

Solution Let

x1 � number of tables manufactured

x2 � number of chairs manufactured

Because x1 and x2 must be integers, Telfa wants to solve the following IP:

max z � 8x1 � 5x2

s.t. x1 � x2 � 6 (Labor constraint)

s.t. 9x1 � 5x2 � 45 (Wood constraint)

x1, x2 � 0; x1, x2 integer

The branch-and-bound method begins by solving the LP relaxation of the IP. If all the de-
cision variables assume integer values in the optimal solution to the LP relaxation, then
the optimal solution to the LP relaxation will be the optimal solution to the IP. We call
the LP relaxation subproblem 1. Unfortunately, the optimal solution to the LP relaxation
is z � �

16
4
5

�, x1 � �
1
4
5
�, x2 � �

9
4

� (see Figure 11). From Section 9.1, we know that (optimal 
z-value for IP) � (optimal z-value for LP relaxation). This implies that the optimal z-value
for the IP cannot exceed �

16
4
5

�. Thus, the optimal z-value for the LP relaxation is an upper
bound for Telfa’s profit.

Our next step is to partition the feasible region for the LP relaxation in an attempt to
find out more about the location of the IP’s optimal solution. We arbitrarily choose a vari-
able that is fractional in the optimal solution to the LP relaxation—say, x1. Now observe
that every point in the feasible region for the IP must have either x1 � 3 or x1 � 4. (Why
can’t a feasible solution to the IP have 3 
 x1 
 4?) With this in mind, we “branch” on
the variable x1 and create the following two additional subproblems:
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x2

x1
1

1

2

3

4

5

6

7

8

9 = IP feasible point
= IP relaxation,s feasible region

Optimal LP solution to subproblem 1

9x1 + 5x2 = 45

x1 + x2 = 6

x1 = 3.75
x2 = 2.25

2 3 4 5 6

F I G U R E  11
Feasible Region for

Telfa Problem



Subproblem 2 Subproblem 1 � Constraint x1 � 4.

Subproblem 3 Subproblem 1 � Constraint x1 � 3.

Observe that neither subproblem 2 nor subproblem 3 includes any points with x1 � �
1
4
5
�.

This means that the optimal solution to the LP relaxation cannot recur when we solve sub-
problem 2 or subproblem 3.

From Figure 12, we see that every point in the feasible region for the Telfa IP is in-
cluded in the feasible region for subproblem 2 or subproblem 3. Also, the feasible regions
for subproblems 2 and 3 have no points in common. Because subproblems 2 and 3 were
created by adding constraints involving x1, we say that subproblems 2 and 3 were created
by branching on x1.

We now choose any subproblem that has not yet been solved as an LP. We arbitrarily
choose to solve subproblem 2. From Figure 12, we see that the optimal solution to sub-
problem 2 is z � 41, x1 � 4, x2 � �

9
5

� (point C). Our accomplishments to date are sum-
marized in Figure 13.

A display of all subproblems that have been created is called a tree. Each subproblem
is referred to as a node of the tree, and each line connecting two nodes of the tree is called
an arc. The constraints associated with any node of the tree are the constraints for the LP
relaxation plus the constraints associated with the arcs leading from subproblem 1 to the
node. The label t indicates the chronological order in which the subproblems are solved.
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x1
1

1

2

3

4

5

6

7

8
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x1 = 4
x1 = 3

z  = 20

C = optimal solution for subproblem 2

Subproblem
3

Subproblem
2

G
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F

B

C

A

= feasible point for original IP
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DEFG = feasible region for subproblem 3

ABC = feasible region for subproblem 2

F I G U R E  12
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Subproblems 2 and 3 
of Telfa Problem

F I G U R E  13
Telfa Subproblems 

1 and 2 Solved

Subproblem 1

Subproblem 2

Subproblem 3

z  =

z  =  41

x1  =  4

x1  =t  = 1

t  = 2

x2  =

x1  ≥  4 x1  ≤  3

165
4

15
4
9
4

x2  = 9
5



The optimal solution to subproblem 2 did not yield an all-integer solution, so we
choose to use subproblem 2 to create two new subproblems. We choose a fractional-
valued variable in the optimal solution to subproblem 2 and then branch on that variable.
Because x2 is the only fractional variable in the optimal solution to subproblem 2, we
branch on x2. We partition the feasible region for subproblem 2 into those points having
x2 � 2 and x2 � 1. This creates the following two subproblems:

Subproblem 4 Subproblem 1 � Constraints x1 � 4 and x2 � 2 � subproblem 2 � Con-
straint x2 � 2.

Subproblem 5 Subproblem 1 � Constraints x1 � 4 and x2 � 1 � subproblem 2 � Con-
straint x2 � 1.

The feasible regions for subproblems 4 and 5 are displayed in Figure 14. The set of un-
solved subproblems consists of subproblems 3, 4, and 5. We now choose a subproblem to
solve. For reasons that are discussed later, we choose to solve the most recently created
subproblem. (This is called the LIFO, or last-in-first-out, rule.) The LIFO rule implies that
we should next solve subproblem 4 or subproblem 5. We arbitrarily choose to solve sub-
problem 4. From Figure 14 we see that subproblem 4 is infeasible. Thus, subproblem 4
cannot yield the optimal solution to the IP. To indicate this fact, we place an � by sub-
problem 4 (see Figure 15). Because any branches emanating from subproblem 4 will yield
no useful information, it is fruitless to create them. When further branching on a sub-
problem cannot yield any useful information, we say that the subproblem (or node) is
fathomed. Our results to date are displayed in Figure 15.

Now the only unsolved subproblems are subproblems 3 and 5. The LIFO rule implies
that subproblem 5 should be solved next. From Figure 14, we see that the optimal solu-
tion to subproblem 5 is point I in Figure 14: z � �

36
9
5

�, x1 � �
4
9
0
�, x2 � 1. This solution does

not yield any immediately useful information, so we choose to partition subproblem 5’s
feasible region by branching on the fractional-valued variable x1. This yields two new sub-
problems (see Figure 16).

Subproblem 6 Subproblem 5 � Constraint x1 � 5.

Subproblem 7 Subproblem 5 � Constraint x1 � 4.
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Together, subproblems 6 and 7 include all integer points that were included in the feasi-
ble region for subproblem 5. Also, no point having x1 � �

4
9
0
� can be in the feasible region

for subproblem 6 or subproblem 7. Thus, the optimal solution to subproblem 5 will not
recur when we solve subproblems 6 and 7. Our tree now looks as shown in Figure 17.

Subproblems 3, 6, and 7 are now unsolved. The LIFO rule implies that we next solve
subproblem 6 or subproblem 7. We arbitrarily choose to solve subproblem 7. From Figure
16, we see that the optimal solution to subproblem 7 is point H: z � 37, x1 � 4, 
x2 � 1. Both x1 and x2 assume integer values, so this solution is feasible for the original
IP. We now know that subproblem 7 yields a feasible integer solution with z � 37. We also
know that subproblem 7 cannot yield a feasible integer solution having z 	 37. Thus, fur-
ther branching on subproblem 7 will yield no new information about the optimal solution
to the IP, and subproblem has been fathomed. The tree to date is pictured in Figure 18.
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of Telfa Problem
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F I G U R E  17
Telfa Subproblems 

1, 2, 4, and 5 Solved

F I G U R E  18
Branch-and-Bound Tree
After Five Subproblems

Have Been Solved
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A solution obtained by solving a subproblem in which all variables have integer val-
ues is a candidate solution. Because the candidate solution may be optimal, we must
keep a candidate solution until a better feasible solution to the IP (if any exists) is found.
We have a feasible solution to the original IP with z � 37, so we may conclude that the
optimal z-value for the IP � 37. Thus, the z-value for the candidate solution is a lower
bound on the optimal z-value for the original IP. We note this by placing the notation 
LB � 37 in the box corresponding to the next solved subproblem (see Figure 19).

The only remaining unsolved subproblems are 6 and 3. Following the LIFO rule, we
next solve subproblem 6. From Figure 16, we find that the optimal solution to subprob-
lem 6 is point A: z � 40, x1 � 5, x2 � 0. All decision variables have integer values, so
this is a candidate solution. Its z-value of 40 is larger than the z-value of the best previ-
ous candidate (candidate 7 with z � 37). Thus, subproblem 7 cannot yield the optimal so-
lution of the IP (we denote this fact by placing an � by subproblem 7). We also update
our LB to 40. Our progress to date is summarized in Figure 20.

Subproblem 3 is the only remaining unsolved problem. From Figure 12, we find that
the optimal solution to subproblem 3 is point F: z � 39, x1 � x2 � 3. Subproblem 3 can-
not yield a z-value exceeding the current lower bound of 40, so it cannot yield the opti-
mal solution to the original IP. Therefore, we place an � by it in Figure 20. From Figure
20, we see that there are no remaining unsolved subproblems, and that only subproblem
6 can yield the optimal solution to the IP. Thus, the optimal solution to the IP is for Telfa
to manufacture 5 tables and 0 chairs. This solution will contribute $40 to profits.

In using the branch-and-bound method to solve the Telfa problem, we have implicitly
enumerated all points in the IP’s feasible region. Eventually, all such points (except for
the optimal solution) are eliminated from consideration, and the branch-and-bound pro-
cedure is complete. To show that the branch-and-bound procedure actually does consider
all points in the IP’s feasible region, we examine several possible solutions to the Telfa
problem and show how the procedure found these points to be nonoptimal. For example,
how do we know that x1 � 2, x2 � 3 is not optimal? This point is in the feasible region
for subproblem 3, and we know that all points in the feasible region for subproblem 3
have z � 39. Thus, our analysis of subproblem 3 shows that x1 � 2, x2 � 3 cannot beat
z � 40 and cannot be optimal. As another example, why isn’t x1 � 4, x2 � 2 optimal?
Following the branches of the tree, we find that x1 � 4, x2 � 2 is associated with sub-
problem 4. Because no point associated with subproblem 4 is feasible, x1 � 4, x2 � 2
must fail to satisfy the constraints for the original IP and thus cannot be optimal for the
Telfa problem. In a similar fashion, the branch-and-bound analysis has eliminated all
points x1, x2 (except for the optimal solution) from consideration.

For the simple Telfa problem, the use of the branch-and-bound method may seem like
using a cannon to kill a fly, but for an IP in which the feasible region contains a large
number of integer points, the procedure can be very efficient for eliminating nonoptimal
points from consideration. For example, suppose we are applying the branch-and-bound
method and our current LB � 42. Suppose we solve a subproblem that contains 1 mil-
lion feasible points for the IP. If the optimal solution to this subproblem has z 
 42, then
we have eliminated 1 million nonoptimal points by solving a single LP!

The key aspects of the branch-and-bound method for solving pure IPs (mixed IPs are
considered in the next section) may be summarized as follows:

Step 1 If it is unnecessary to branch on a subproblem, then it is fathomed. The following
three situations result in a subproblem being fathomed: (1) The subproblem is infeasible; (2)
the subproblem yields an optimal solution in which all variables have integer values; and (3)
the optimal z-value for the subproblem does not exceed (in a max problem) the current LB.
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Step 2 A subproblem may be eliminated from consideration in the following situations:
(1) The subproblem is infeasible (in the Telfa problem, subproblem 4 was eliminated for
this reason); (2) the LB (representing the z-value of the best candidate to date) is at least
as large as the z-value for the subproblem (in the Telfa problem, subproblems 3 and 7 were
eliminated for this reason).

Recall that in solving the Telfa problem by the branch-and-bound procedure, many seem-
ingly arbitrary choices were made. For example, when x1 and x2 were both fractional in the
optimal solution to subproblem 1, how did we determine the branching variable? Or how
did we determine which subproblem should next be solved? The manner in which these
questions are answered can result in trees that differ greatly in size and in the computer time
required to find an optimal solution. Through experience and ingenuity, practitioners of the
procedure have developed guidelines on how to make the necessary decisions.

Two general approaches are commonly used to determine which subproblems should
be solved next. The most widely used is the LIFO rule, which chooses to solve the most
recently created subproblem.† LIFO leads us down one side of the branch-and-bound tree
(as in the Telfa problem) and quickly finds a candidate solution. Then we backtrack our
way up to the top of the other side of the tree. For this reason, the LIFO approach is of-
ten called backtracking.

The second commonly used method is jumptracking. When branching on a node, the
jumptracking approach solves all the problems created by the branching. Then it branches
again on the node with the best z-value. Jumptracking often jumps from one side of the
tree to the other. It usually creates more subproblems and requires more computer stor-
age than backtracking. The idea behind jumptracking is that moving toward the subprob-
lems with good z-values should lead us more quickly to the best z-value.

If two or more variables are fractional in a subproblem’s optimal solution, then on
which variable should we branch? Branching on the fractional-valued variable that has the
greatest economic importance is often the best strategy. In the Nickles example, suppose
the optimal solution to a subproblem had y1 and x12 fractional. Our rule would say to
branch on y1 because y1 represents the decision to operate (or not operate) a lockbox in
city 1, and this is presumably a more important decision than whether region 1 payments
should be sent to city 2. When more than one variable is fractional in a subproblem so-
lution, many computer codes will branch on the lowest-numbered fractional variable.
Thus, if an integer programming computer code requires that variables be numbered, they
should be numbered in order of their economic importance (1 � most important).

R E M A R K S 1 For some IP’s, the optimal solution to the LP relaxation will also be the optimal solution to the
IP. Suppose the constraints of the IP are written as Ax � b. If the determinant‡ of every square sub-
matrix of A is �1, �1, or 0, we say that the matrix A is unimodular. If A is unimodular and each
element of b is an integer, then the optimal solution to the LP relaxation will assign all variables
integer values [see Shapiro (1979) for a proof] and will therefore be the optimal solution to the IP.
It can be shown that the constraint matrix of any MCNFP is unimodular. Thus, as was discussed in
Chapter 8, any MCNFP in which each node’s net outflow and each arc’s capacity are integers will
have an integer-valued solution.
2 As a general rule, the more an IP looks like an MCNFP, the easier the problem is to solve by
branch-and-bound methods. Thus, in formulating an IP, it is good to choose a formulation in which
as many variables as possible have coefficients of �1, �1, and 0. To illustrate this idea, recall that
the formulation of the Nickles (lockbox) problem given in Section 9.2 contained 16 constraints of
the following form:

Formulation 1 xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)
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†For two subproblems created at the same time, many sophisticated methods have been developed to deter-
mine which one should be solved first. See Taha (1975) for details.
‡The determinant of a matrix is defined in Section 2.6.



As we have already seen in Section 9.2, if the 16 constraints in (25) are replaced by the following
4 constraints, then an equivalent formulation results:

Formulation 2 x11 � x21 � x31 � x41 � 4y1

x12 � x22 � x32 � x42 � 4y2

x13 � x23 � x33 � x43 � 4y3

x14 � x24 � x34 � x44 � 4y4

Because formulation 2 has 16 � 4� 12 fewer constraints than formulation 1, one might think that
formulation 2 would require less computer time to find the optimal solution. This turns out to be
untrue. To see why, recall that the branch-and-bound method begins by solving the LP relaxation
of the IP. The feasible region of the LP relaxation of formulation 2 contains many more noninteger
points than the feasible region of formulation 1. For example, the point y1 � y2 � y3 � y4

� �
1
4

�, x11 � x22 � x33 � x44 � 1 (all other xij’s equal 0) is in the feasible region for the LP relax-
ation of formulation 2, but not for formulation 1. The branch-and-bound method must eliminate all
noninteger points before obtaining the optimal solution to the IP, so it seems reasonable that formu-
lation 2 will require more computer time than formulation 1. Indeed, when the LINDO package was
used to find the optimal solution to formulation 1, the LP relaxation yielded the optimal solution.
But 17 subproblems were solved before the optimal solution was found for formulation 2. Note that
formulation 2 contains the terms 4y1, 4y2, 4y3, and 4y4. These terms “disturb” the network-like struc-
ture of the lockbox problem and cause the branch-and-bound method to be less efficient.
3 When solving an IP in the real world, we are usually happy with a near-optimal solution. For ex-
ample, suppose that we are solving a lockbox problem and the LP relaxation yields a cost of
$200,000. This means that the optimal solution to the lockbox IP will certainly have a cost of at least
$200,000. If we find a candidate solution during the course of the branch-and-bound procedure that
has a cost of, say, $205,000, why bother to continue with the branch-and-bound procedure? Even if
we found the optimal solution to the IP, it could not save more than $5,000 in costs over the candi-
date solution with z � 205,000. It might even cost more than $5,000 in computer time to find the
optimal lockbox solution. For this reason, the branch-and-bound procedure is often terminated when
a candidate solution is found with a z-value close to the z-value of the LP relaxation.
4 Subproblems for branch-and-bound problems are often solved using some variant of the dual
simplex algorithm. To illustrate this, we return to the Telfa example. The optimal tableau for the LP
relaxation of the Telfa problem is

zx1x2 � 1.25s1 � 0.75s2 � 41.25
zx1x2 � 2.25s1 � 0.25s2 � 2.25
zx1x2 � 1.25s1 � 0.25s2 � 3.75

After solving the LP relaxation, we solved subproblem 2, which is just subproblem 1 plus the con-
straint x1 � 4. Recall that the dual simplex is an efficient method for finding the new optimal so-
lution to an LP when we know the optimal tableau and a new constraint is added to the LP. We have
added the constraint x1 � 4 (which may be written as x1 � e3 � 4). To utilize the dual simplex, 
we must eliminate the basic variable x1 from this constraint and use e3 as a basic variable for x1 �
e3 � 4. Adding �(second row of optimal tableau) to the constraint x1 � e3 � 4, we obtain the 
constraint 1.25s1 � 0.25s2 � e3 � 0.25. Multiplying this constraint through by �1, we obtain
�1.25s1 � 0.25s2 � e3 � �0.25. After adding this constraint to subproblem 1’s optimal tableau,
we obtain the tableau in Table 56. The dual simplex method states that we should enter a variable
from row 3 into the basis. Because s1 is the only variable with a negative coefficient in row 3, s1

will enter the basis in row 3. After the pivot, we obtain the (optimal) tableau in Table 57. Thus, the
optimal solution to subproblem 2 is z � 41, x2 � 1.8, x1 � 4, s1 � 0.20.
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TA B L E  56
Initial Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 � 1.25s1 � 0.75s2 � e3 � 41.25 z1 � 41.25
z x1 x2 � 2.25s1 � 0.25s2 � e3 � 2.25 x2 � 2.25
z x1 x2 � 1.25s1 � 0.25s2 � e3 � 3.75 x1 � 3.75
z x1 x2 � 1.25s1 � 0.25s2 � e3 � �0.25 e3 � �0.25



5 In Problem 8, we show that if we create two subproblems by adding the constraints xk � i and
xk � i � 1, then the optimal solution to the first subproblem will have xk � i and the optimal 
solution to the second subproblem will have xk � i � 1. This observation is very helpful when we
graphically solve subproblems. For example, we know the optimal solution to subproblem 5 of 
Example 9 will have x2 � 1. Then we can find the value of x1 that solves subproblem 5 by choos-
ing x1 to be the largest integer satisfying all constraints when x2 � 1.

Solver Tolerance Option for Solving IPs

When solving integer programming problems with the Excel Solver, you may go to Options
and set a tolerance. A tolerance value of, say, .20, causes the Excel Solver to stop when a fea-
sible solution is found that has an objective function value within 20% of the optimal z-value
for the problem’s LP relaxation. For instance, in Example 9, the optimal z-value for the LP
relaxation was 41.25. With a tolerance of .20, the Solver would stop whenever a feasible in-
teger solution is found with a z-value exceeding (1 � .2)(41.25) � 33. Thus, if we solved
Example 9 with the Excel Solver and found a feasible integer solution having z � 35, then
the Solver would stop because this solution would be within 20% of the LP relaxation bound.

Why set a nonzero tolerance? For many large IP problems, it might take a long time (weeks
or months!) to find an optimal solution. It might take much less time to find a near-optimal
solution (say, within 5% of the optimal LP relaxation). In this case, we would be much better
off with a near-optimal solution, and use of the tolerance option might be appropriate.

P R O B L E M S
Group A
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TA B L E  57
Optimal Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 s1 � 0.20s2 � 0.80e3 � 41 z1 � 41
z x1 x2 s1 � 0.20s2 � 01.8e3 � 1.8 x2 � 1.8
z x1 x2 s1 � 0.20s2 � 0.80e3 � 4 x1 � 4
z x1 x2 s1 � 0.20s2 � 0.80e3 � 0.20 s1 � 0.20

Use branch-and-bound to solve the following IPs:

1 max z � 5x1 � 2x2

s.t. 3x1 � x2 � 12
s.t. x1 � x2 � 5
s.t. 3x1x1, x2 � 0; x1, x2 integer

2 The Dorian Auto example of Section 3.2.

3 max z � 2x1 � 3x2

s.t. x1 � 2x2 � 10
s.t. 3x1 � 4x2 � 25
s.t. 3x1 x1, x2 � 0; x1, x2 integer

4 max z � 4x1 � 3x2

s.t. 4x1 � 9x2 � 26
s.t. 8x1 � 5x2 � 17
s.t. 3x1 x1, x2 � 0; x1, x2 integer

5 max z � 4x1 � 5x2

s.t. x1 � 4x2 � 5
s.t. 3x1 � 2x2 � 7
s.t. 3x1 x1, x2 � 0; x1, x2 integer

6 max z � 4x1 � 5x2

s.t. 3x1 � 2x2 � 10
s.t. x1 � 4x2 � 11
s.t. 3x1 � 3x2 � 13
s.t. 3x1 x1, x2 � 0; x1, x2 integer

7 Use the branch-and-bound method to find the optimal
solution to the following IP:

max z � 7x1 � 3x2

s.t. 2x1 � x2 � 9
s.t. 3x1 � 2x2 � 13
s.t. 3x1 x1, x2 � 0; x1, x2 integer
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Nonlinear Programming

In previous chapters, we have studied linear programming problems. For an LP, our goal was
to maximize or minimize a linear function subject to linear constraints. But in many interesting
maximization and minimization problems, the objective function may not be a linear function, or
some of the constraints may not be linear constraints. Such an optimization problem is called
a nonlinear programming problem (NLP). In this chapter, we discuss techniques used to solve
NLPs.

We begin with a review of material from differential calculus, which will be needed for our
study of nonlinear programming.

11.1 Review of Differential Calculus
Limits

The idea of a limit is one of the most basic ideas in calculus.

D E F I N I T I O N ■ The equation

lim
x→a

f (x) � c

means that as x gets closer to a (but not equal to a), the value of f (x) gets arbitrarily
close to c. ■

It is also possible that limx→a f (x) may not exist.

1 Show that lim
x→2

x2 � 2x � 22 � 2(2) � 0.

2 Show that lim
x→0

�
1
x

� does not exist.

Solution 1 To verify this result, evaluate x2 � 2x for values of x close to, but not equal to, 2.

2 To verify this result, observe that as x gets near 0, �
1
x

� becomes either a very large pos-
itive number or a very large negative number. Thus, as x approaches 0, �

1
x

� will not approach
any single number.

LimitsE X A M P L E  1
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Continuity

D E F I N I T I O N ■ A function f (x) is continuous at a point a if

lim
x→a

f (x) � f (a)

If f (x) is not continuous at x � a, we say that f (x) is discontinuous (or has a 
discontinuity) at a. ■

Bakeco orders sugar from Sugarco. The per-pound purchase price of the sugar depends
on the size of the order (see Table 1). Let

x � number of pounds of sugar purchased by Bakeco

f (x) � cost of ordering x pounds of sugar

Then

f (x) � 25x for 0 � x � 100

f (x) � 20x for 100 � x � 200

f (x) � 15x for x � 200

For all values of x, determine if x is continuous or discontinuous.

Solution From Figure 1, it is clear that

lim
x→100

f (x) and lim
x→200

f (x)

do not exist. Thus, f (x) is discontinuous at x � 100 and x � 200 and is continuous for
all other values of x satisfying x � 0.

Continuous FunctionsE X A M P L E  2

TA B L E  1
Price of Sugar Paid by Bakeco

Size of Order Price per Pound (¢)

100 � x � 100 25
100 � x � 200 20
100 � x � 200 15

f(x)

x
100 200 300

$10

$20

$25

$30

$40

F I G U R E  1
Cost of Purchasing

Sugar for Bakeco
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Differentiation

D E F I N I T I O N ■ The derivative of a function f (x) at x � a [written f 	(a)] is defined to be

lim

x→0

�
f (a � 





x

x

) � f (a)
� ■

If this limit does not exist, then f (x) has no derivative at x � a.
We may think of f 	(a) as the slope of f (x) at x � a. Thus, if we begin at x � a and

increase x by a small amount 
 (
 may be positive or negative), then f (x) will increase
by an amount approximately equal to 
f 	(a). If f 	(a) � 0, then f (x) is increasing at x �
a, whereas if f 	(a) � 0, then f (x) is decreasing at x � a. The derivatives of many func-
tions can be found via application of the rules in Table 2 (a represents an arbitrary con-
stant). Example 3 illustrates the use and interpretation of the derivative.

If a company charges a price p for a product, then it can sell 3e�p thousand units of the
product. Then, f (p) � 3,000pe�p is the company’s revenue if it charges a price p.

1 For what values of p is f (p) decreasing? For what values of p is f (p) increasing?

2 Suppose the current price is $4 and the company increases the price by 5¢. By ap-
proximately how much would the company’s revenue change?

Solution We have

f 	(p) � �3,000pe�p � 3,000e�p � 3,000e�p(1 � p)

1 For p � 1, f 	(p) � 0 and f (p) is increasing, whereas for p � 1, f 	(p) � 0 and f (p) is
decreasing.

Product ProfitabilityE X A M P L E  3

TA B L E  2
Rules for Finding the Derivative of a Function

Function Derivative of Function

a 0
x 1
af (x) af 	(x)
f (x) � g (x) f 	(x) � g 	(x)
xn nxn�1

ex ex

ax ax lna
lnx �

1
x

�

[ f (x)]n n [ f (x)]n�1f 	(x)
e f (x) e f (x) f 	(x)
a f (x) a f (x) f 	(x) lna

ln f (x)
f 	(x)
f x

f (x)g (x) f (x)g	(x) � f 	(x)g (x)
f (x) g (x) f 	(x) � f (x)g 	(x)

g (x) g (x)2
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2 Using the interpretation of f 	(4) as the slope of f (p) at p � 4 (with 
p � 0.05), we
see that the company’s revenue would increase by approximately

0.05(3,000e�4)(1 � 4) � �8.24

In actuality, of course, the company’s revenue would increase by

f (4.05) � f (4) � 3,000(4.05)e�4.05 � 3,000(4)e�4

� 211.68 � 219.79 � �8.11

Higher Derivatives

We define f (2)(a) � f �(a) to be the derivative of the function f 	(x) at x � a. Similarly,
we can define (if it exists) f (n)(a) to be the derivative of f (n�1)(x) at x � a. Thus, for 
Example 3,

f �( p) � 3,000e�p(�1) � 3,000e�p(1 � p)

Taylor Series Expansion

In the Taylor series expansion of a function f (x), given that f (n�1)(x) exists for every point
on the interval [a, b], we can write for any h satisfying 0 � h � b � a,

f (a � h) � f (a) � �
i�n

i�1

�
f (i

i

)

!

(a)
� hi � �

f
(n

(n�

�

1)

1
(p
)!
)

� hn�1 (1)

where (1) will hold for some number p between a and a � h. Equation (1) is the nth-
order Taylor series expansion of f (x) about a.

Find the first-order Taylor series expansion of e�x about x � 0.

Solution Because f 	(x) � �e�x and f �(x) � e�x, we know that (1) will hold on any interval [0, b].
Also, f (0) � 1, f 	(0) � �1, and f �(x) � e�x. Then (1) yields the following first-order Tay-
lor series expansion for e�x about x � 0:

e�h � f (h) � 1 � h �

This equation holds for some p between 0 and h.

Partial Derivatives

We now consider a function f of n � 1 variables (x1, x2, . . . , xn), using the notation f (x1,
x2, . . . , xn) to denote such a function.

h2e�p

�
2

Taylor Series ExpansionE X A M P L E  4



614 C H A P T E R 1 1 Nonlinear Programming

D E F I N I T I O N ■ The partial derivative of f (x1, x2, . . . , xn) with respect to the variable xi is 

written �
∂
∂
x

f

i

�, where

�
∂
∂
x

f

i

� � lim

xi→0

■

Intuitively, if xi is increased by 
 (and all other variables are held constant), then for

small values of 
, the value of f (x1, x2, . . . , xn) will increase by approximately 
 �
∂
∂
x

f

i

�. We 

find �
∂
∂
x

f

i

� by treating all variables other than xi as constants and finding the derivatives of

f (x1, x2, . . . , xn). More generally, suppose that for each i, we increase xi by a small amount

xi. Then the value of f will increase by approximately

�
i�n

i�1

�
∂
∂
x

f

i

� 
xi

The demand f (p, a) � 30,000p�2a1/6 for a product depends on p � product price (in dol-
lars) and a � dollars spent advertising the product. Is demand an increasing or decreas-
ing function of price? Is demand an increasing or decreasing function of advertising ex-
penditure? If p � 10 and a � 1,000,000, then by how much (approximately) will a $1 cut
in price increase demand?

Solution �
∂
∂
p

f
� � 30,000(�2p�3)a1/6 � �60,000p�3a1/6 � 0

�
∂
∂
a

f
� � 30,000p�2 ��a

�

6

5/6

�� � 5,000p�2a�5/6 � 0

Thus, an increase in price (with advertising held constant) will decrease demand, while
an increase in advertising (with price held constant) will increase demand. Because

�
∂
∂
p

f
� (10, 1,000,000) � �60,000 ��1,0

1

00
�� (1,000,000)1/6 � �600

a $1 price cut will increase demand by approximately (�1)(�600), or 600 units.

We will also use second-order partial derivatives extensively. We use the notation

�
∂x

∂

i

2

∂xj

� to denote a second-order partial derivative. To find �
∂x

∂

i∂

2

xj

�, we first find �
∂
∂
x

f

i

� and 

then take its partial derivative with respect to xj. If the second-order partials exist and are
everywhere continuous, then

�
∂x

∂

i

2

∂
f

xj

� � �
∂x

∂

j

2

∂
f

xi

�

For f ( p, a) � 30,000p�2a1/6, find all second-order partial derivatives.

f (x1, . . . , xi � 
xi, . . . , xn) � f (x1, . . . , xi, . . . , xn)
������


xi

When Is a Function Increasing?E X A M P L E  5

Second-Order Partial DerivativesE X A M P L E  6
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Solution �
∂
∂
p

2f
2

� � �60,000(�3p�4)a1/6 � �
180,0

p

0
4

0a1/6

�

�
∂
∂
a

2f
2

� � 5,000p�2 ���5a

6

�11/6

�� � ��
25,000p

6

�2a�11/6

�

�
∂
∂
a

2

∂
f

p
� � 5,000(�2p�3)a�5/6 � �10,000p�3a�5/6

�
∂
∂
p

2

∂
f

a
� � �60,000p�3 ��a

�

6

5/6

�� � �10,000p�3a�5/6

Observe that for p  0 and a  0,

�
∂
∂
a

2

∂
f

p
� � �

∂
∂
p

2

∂
f

a
�

P R O B L E M S
Group A

1 Find limh→0 �
3h �

h
h2

�.

2 It costs Sugarco 25¢/lb to purchase the first 100 lb of
sugar, 20¢/lb to purchase the next 100 lb, and 15¢ to buy
each additional pound. Let f (x) be the cost of purchasing x
pounds of sugar. Is f (x) continuous at all points? Are there
any points where f (x) has no derivative?

3 Find f 	(x) for each of the following functions:
a xe�x

b �
x2

x

�

2

1
�

c e3x

d (3x � 2)�2

e ln x3

4 Find all first- and second-order partial derivatives for
f (x1, x2) � x2

1ex2.

5 Find the second-order Taylor series expansion of ln x
about x � 1.

Group B

6 Let q � f ( p) be the demand for a product when the
price is p. For a given price p, the price elasticity E of the
product is defined by

E �

If the change in price (
p) is small, this formula reduces to

E � � ��
p

q
�� ��

d

d

q

p
��

a Would you expect f( p) to be positive or negative?

�



q

q
�

�

�



p

p
�

percentage change in demand
����

percentage change in price

b Show that if E � �1, a small decrease in price will
increase the firm’s total revenue (in this case, we say that
demand is elastic).
c Show that if �1 � E � 0, a small price decrease
will decrease total revenue (in this case, we say demand
is inelastic). 

7 Suppose that if x dollars are spent on advertising during
a given year, k(1 � e�cx) customers will purchase a product
(c � 0).

a As x grows large, the number of customers purchas-
ing the product approaches a limit. Find this limit.
b Can you give an interpretation for k?
c Show that the sales response from a dollar of adver-
tising is proportional to the number of potential cus-
tomers who are not purchasing the product at present.

8 Let the total cost of producing x units, c(x), be given by
c(x) � kx1�b (0 � b � 1). This cost curve is called the
learning or experience cost curve.

a Show that the cost of producing a unit is a decreasing
function of the number of units that have been produced.
b Suppose that each time the number of units pro-
duced is doubled, the per-unit product cost drops to r%
of its previous value (because workers learn how to per-
form their jobs better). Show that r � 100(2�b).

9 If a company has m hours of machine time and w hours
of labor, it can produce 3m1/3w2/3 units of a product.
Currently, the company has 216 hours of machine time and
1,000 hours of labor. An extra hour of machine time costs
$100, and an extra hour of labor costs $50. If the company
has $100 to invest in purchasing additional labor and
machine time, would it be better off buying 1 hour of
machine time or 2 hours of labor?
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11.2 Introductory Concepts

D E F I N I T I O N ■ A general nonlinear programming problem (NLP) can be expressed as follows:
Find the values of decision variables x1, x2, . . . , xn that

max (or min) z � f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) (�, �, or �) b1

s.t. g2(x1, x2, . . . , xn) (�, �, or �) b2 (2)

���

gm(x1, x2, . . . , xn) (�, �, or �) bm ■

As in linear programming, f (x1, x2, . . . , xn) is the NLP’s objective function, and 
g1(x1, x2, . . . , xn) (�, �, or �) b1, . . . , gm(x1, x2, . . . , xn) (�, �, or �) bm are the NLP’s
constraints. An NLP with no constraints is an unconstrained NLP.

The set of all points (x1, x2, . . . , xn) such that xi is a real number is Rn. Thus, R1 is the set
of all real numbers. The following subsets of R1 (called intervals) will be of particular interest:

[a, b] � all x satisfying a � x � b

[a, b) � all x satisfying a � x � b

(a, b] � all x satisfying a � x � b

(a, b) � all x satisfying a � x � b

[a, ∞) � all x satisfying x � a � b

(�∞, b] � all x satisfying  x � b � b

The following definitions are analogous to the corresponding definitions for LPs given in
Section 3.1.

D E F I N I T I O N ■ The feasible region for NLP (2) is the set of points (x1, x2, . . . , xn) that satisfy
the m constraints in (2). A point in the feasible region is a feasible point, and a
point that is not in the feasible region is an infeasible point. ■

Suppose (2) is a maximization problem.

D E F I N I T I O N ■ Any point x� in the feasible region for which f (x�) � f(x) holds for all points x in
the feasible region is an optimal solution to the NLP. [For a minimization
problem, x� is the optimal solution if f(x�) � f (x) for all feasible x.] ■

Of course, if f, g1, g2, . . . , gm are all linear functions, then (2) is a linear programming
problem and may be solved by the simplex algorithm.

Examples of NLPs

It costs a company c dollars per unit to manufacture a product. If the company charges p
dollars per unit for the product, customers demand D( p) units. To maximize profits, what
price should the firm charge?

Profit MaximizationE X A M P L E  7
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Solution The firm’s decision variable is p. Since the firm’s profit is (p � c)D(p), the firm wants to
solve the following unconstrained maximization problem: max(p � c)D(p).

If K units of capital and L units of labor are used, a company can produce KL units of a
manufactured good. Capital can be purchased at $4/unit and labor can be purchased at
$1/unit. A total of $8 is available to purchase capital and labor. How can the firm maxi-
mize the quantity of the good that can be manufactured?

Solution Let K � units of capital purchased and L � units of labor purchased. Then K and L must
satisfy 4K � L � 8, K � 0, and L � 0. Thus, the firm wants to solve the following con-
strained maximization problem:

max z � KL

s.t. 4K � L � 8

s.t. 4KK, L � 0

Solving NLPs with LINGO

LINGO may be used to solve NLPs on a PC. Figure 2 (file Cap.lng) contains the LINGO
formulation and output for Example 8. From the Value column, we see that LINGO has
found the solution K � 1 and L � 4, which has an objective function value of 4. As we
shall soon see, this is indeed the optimal solution to Example 8. However, in general, there
is no guarantee that the solution found by LINGO is an optimal solution. Throughout this
chapter, we will detail the circumstances in which you can be sure that LINGO will find
the optimal solution to an NLP.

Note that the ^ symbol is used to indicate raising to a power and * indicates multipli-
cation. LINGO has several built-in functions including

■ ABS(X) � absolute value of X

■ EXP(X) � ex

■ LOG(X) � natural logarithm of X

In Sections 11.9 and 11.10, we will discuss the Price column of the LINGO output. We
will not discuss the Reduced Cost column.

Differences Between NLPs and LPs

Recall from Chapter 3 that the feasible region for any LP is a convex set (that is, if A and
B are feasible for an LP, then the entire line segment joining A and B is also feasible).
Also recall that if an LP has an optimal solution, then there is an extreme point of the fea-
sible region that is optimal. We will soon see, however, that even if the feasible region for
an NLP is a convex set, the optimal solution (unlike the optimal solution for an LP) need
not be an extreme point of the NLP’s feasible region. The previous example illustrates this
idea. Figure 3 shows graphically the feasible region (bounded by triangle ABC) for the
example and the isoprofit curves KL � 1, KL � 2, and KL � 4. We see that the optimal
solution to the example occurs where an isoprofit curve is tangent to the boundary of the
feasible region. Thus, the optimal solution to the example is z � 4, K � 1, L � 4 (point
D). Of course, point D is not an extreme point of the NLP’s feasible region. For this ex-

Production MaximizationE X A M P L E  8

Cap.lng
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F I G U R E  2

L

K
1 2

1

0
B

A

KL = 4
KL = 2
KL = 1

D

C

2

3

4

max z = KL
s.t.   4K + L ≤ 8
          K, L ≥ 0
D is optimal solution

5

6

7

8

F I G U R E  3
An NLP Whose Optimal

Solution Is Not an
Extreme Point
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ample (and many other NLPs with linear constraints), the optimal solution fails to be an
extreme point of the feasible region because the isoprofit curves are not straight lines. In
fact, the optimal solution for an NLP may not be on the boundary of the feasible region.
For example, consider the following NLP:

max z � f (x)

s.t. 0 � x � 1

where f (x) is pictured in Figure 4. The optimal solution for this NLP is z �1, x � �
1
2

�. Of
course, x � �

1
2

� is not on the boundary of the feasible region.

Local Extremum

D E F I N I T I O N ■ For any NLP (maximization), a feasible point x � (x1, x2, . . . , xn) is a local
maximum if for sufficiently small �, any feasible point x	 � (x	1, x	2, . . . , x	n)
having �xi � x	i � � � (i � 1, 2, . . . , n) satisfies f (x) � f (x	). ■

In short, a point x is a local maximum if f (x) � f (x	) for all feasible x	 that are close
to x. Analogously, for a minimization problem, a point x is a local minimum if f (x) � f (x	)
holds for all feasible x	 that are close to x. A point that is a local maximum or a local
minimum is called a local, or relative, extremum.

For an LP (max problem), any local maximum is an optimal solution to the LP. (Why?)
For a general NLP, however, this may not be true. For example, consider the following
NLP:

max z � f (x) 

s.t. 0 � x � 10

where f (x) is given in Figure 5. Points A, B, and C are all local maxima, but point C is
the unique optimal solution to the NLP.

Unlike an LP, an NLP may not satisfy the Proportionality and Additivity assumptions.
For instance, in Example 8, increasing L by 1 will increase z by K. Thus, the effect on z
of increasing L by 1 depends on K. This means that the example does not satisfy the Ad-
ditivity Assumption.

z

x0

1

10 1

z = f(x)

max f(x)
s.t.  0 ≤ x ≤ 1

1
2

F I G U R E  4
An NLP Whose Optimal

Solution Is Not on
Boundary of Feasible

Region
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The NLP

max z � x1/3 � y1/3

s.t. x � y � 1

s.t. x, y � 0

does not satisfy the Proportionality Assumption, because doubling the value of x does not
double the contribution of x to the objective function.

More Examples of NLP Formulations

We now give three more examples of nonlinear programming formulations.

Oilco produces three types of gasoline: regular, unleaded, and premium. All three are pro-
duced by combining lead and crude oil brought in from Alaska and Texas. The required
sulphur content, octane levels, minimum daily demand (in gallons), and sales price per
gallon of each type of gasoline are given in Table 3. The crude brought in from Alaska is
made by blending two types of crude: Alaska1 and Alaska2. The Alaska crude is blended
in Alaska and shipped via pipeline to Oilco’s Texas refinery. At most, 10,000 gallons of
crude per day can be shipped from Alaska. The sulphur content, octane level, daily max-
imum amount available (in gallons) and purchase cost (per gallon) for each type of Alaska
crude, Texas crude, and lead are given in Table 4. Of course, unleaded gasoline can con-
tain no lead. Formulate an NLP to help Oilco maximize the daily profit obtained from
selling gasoline.†

Solution After defining the following decision variables:

R � gallons of regular gasoline produced daily

U � gallons of unleaded gasoline produced daily

P � gallons of premium gasoline produced daily

A1 � gallons of Alaska1 crude purchased daily

A2 � gallons of Alaska2 crude purchased daily

T � gallons of Texas crude purchased daily

L � gallons of lead purchased daily

z

x

A

B

C

0

z = f(x)

10

F I G U R E  5
A Local Maximum May

Not Be the Optimal
Solution to an NLP

Oilco NLPE X A M P L E  9

†Based on Haverly (1978).
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11.3 Convex and Concave Functions
Convex and concave functions play an extremely important role in the study of nonlinear
programming problems.

Let f (x1, x2, . . . , xn) be a function that is defined for all points (x1, x2, . . . , xn) in a
convex set S.†

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) is a convex function on a convex set S if for any 
x	 � S and x� � S

f [cx	 � (1 � c)x�] � cf (x	) � (1 � c)f (x�) (3)

holds for 0 � c � 1. ■

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) is a concave function on a convex set S if for any 
x	 � S and x� � S

f [cx	 � (1 � c)x�] � cf (x	) � (1 � c)f (x�) (4)

holds for 0 � c � 1. ■

From (3) and (4), we see that f (x1, x2, . . . , xn) is a convex function if and only if �f (x1,
x2, . . . , xn) is a concave function, and conversely.

To gain some insights into these definitions, let f (x) be a function of a single variable.
From Figure 15 and inequality (3), we find that f (x) is convex if and only if the line 
segment joining any two points on the curve y � f (x) is never below the curve y � f (x).
Similarly, Figure 16 and inequality (4) show that f (x) is a concave function if and only if
the straight line joining any two points on the curve y � f (x) is never above the curve 
y � f (x).

†Recall from Chapter 3 that a set S is convex if x	 � S and x� � S imply that all points on the line segment
joining x	 and x� are members of S. This ensures that cx	 � (1 � c)x� will be a member of S.

y

x

y = f(x)

A

C

x cx  + (1 – c)x 

D

B

Point A = (x , f(x ))
Point D = (x  , f(x  ))
Point C = (cx  + (1 – c)x  , cf(x ) + (1 – c)f(x  ))
Point B = (cx  + (1 – c)x  , f(cx  + (1 – c)x  ))
From figure: f(cx  + (1 – c)x  ) ≤ cf(x ) + (1 – c)f(x  )

x

y

x

y = f(x)

A

B

C

D

x cx  + (1 – c)x 

Point A = (x , f(x ))
Point D = (x  , f(x  ))
Point C = (cx  + (1 – c)x  , f(cx  + (1 – c)x  ))
Point B = (cx  + (1 – c)x  , cf(x ) + (1 – c)f(x  ))
From figure: f(cx  + (1 – c)x  ) ≥ cf(x ) + (1 – c)f(x  )

x

F I G U R E  15
A Convex Function

F I G U R E  16
A Concave Function
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It can be shown (see Problem 12 at the end of this section) that the sum of two convex
functions is convex and the sum of two concave functions is concave. Thus, f (x) � x2 �
ex is a convex function.

Because the line segment AB lies below y � f (x) and the line segment BC lies above y �
f (x), f (x) as pictured in Figure 18 is not a convex or a concave function. 

For x � 0, f (x) � x2 and f (x) � ex are convex functions and f (x) � x1/2 is a concave func-
tion. These facts are evident from Figure 17. 

Convex and Concave FunctionsE X A M P L E  1 2

Sum of Convex FunctionsE X A M P L E  1 3

Neither Convex nor Concave FunctionE X A M P L E  1 4

Both Convex and Concave Linear FunctionE X A M P L E  1 5

f(x)

f(x) = x2

a  Convex

x

f(x)

f(x) = x1/2

c  Concave

x

f(x)

f(x) = ex

b  Convex

x

F I G U R E  17
Examples of Convex

and Concave Functions

y

x

y = f(x)

B
A

C
F I G U R E  18

A Function That 
Is Neither Convex 

Nor Concave

A linear function of the form f (x) � ax � b is both a convex and a concave function.
This follows from

f [cx	 � (1 � c)x�] � a[cx	 � (1 � c)x�] � b

� c(ax	 � b) � (1 � c)(ax� � b) 

� cf (x	) � (1 � c)f (x�)
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Both (3) and (4) hold with equality, so f (x) � ax � b is both a convex and a concave
function.

Before discussing how to determine whether a given function is convex or concave, we
prove a result that illustrates the importance of convex and concave functions.

Consider NLP (2) and assume it is a maximization problem. Suppose the feasible
region S for NLP (2) is a convex set. If f (x) is concave on S, then any local maxi-
mum for NLP (2) is an optimal solution to this NLP.

Proof If Theorem 1 is false, then there must be a local maximum x� that is not an
optimal solution to NLP (2). Let S be the feasible region for NLP (2) (we have as-
sumed that S is a convex set). Then, for some x � S, f (x) � f (x�). The inequality (4)
implies that for any c satisfying 0 � c � 1,

f [cx� � (1 � c)x] � cf (x�) � (1 � c) f (x)

� cf (x�) � (1 � c) f (x�) [from f (x) � f (x�)]

� f (x�) 

Now observe that for c arbitrarily near 1, cx� � (1 � c)x is feasible (because S is
convex) and is near x�. Thus, x� cannot be a local maximum. This contradiction proves
Theorem 1.

Similar reasoning can be used to prove Theorem 1	 (see Problem 11 at the end of this
section).

Consider NLP (2) and assume it is a minimization problem. Suppose the feasible
region S for NLP (2) is a convex set. If f (x) is convex on S, then any local mini-
mum for NLP (2) is an optimal solution to this NLP.

Theorems 1 and 1	 demonstrate that if we are maximizing a concave function (or min-
imizing a convex function) over a convex feasible region S, then any local maximum (or
local minimum) will solve NLP (2). As we solve NLPs, we will repeatedly apply Theo-
rems 1 and 1	.

We now explain how to determine if a function f (x) of a single variable is convex or
concave. Recall that if f (x) is a convex function of a single variable, the line joining any
two points on y � f (x) is never below the curve y � f (x). From Figures 9 and 10, we see
that f (x) convex implies that the slope of f (x) must be nondecreasing for all values of x.

Suppose f �(x) exists for all x in a convex set S. Then f (x) is a convex function on
S if and only if f �(x) � 0 for all x in S.

T H E O R E M  1

T H E O R E M  1�

T H E O R E M  2
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Because f (x) is convex if and only if �f (x) is concave, Theorem 2	 must also be true.

Suppose f �(x) exists for all x in a convex set S. Then f (x) is a concave function on
S if and only if f �(x) � 0 for all x in S.

1 Show that f (x) � x2 is a convex function on S � R1.

2 Show that f (x) � ex is a convex function on S � R1.

3 Show that f (x) � x1/2 is a concave function on S � (0, ∞).

4 Show that f (x) � ax � b is both a convex and a concave function on S � R1. 

Solution 1 f �(x) � 2 � 0, so f (x) is convex on S � R1.

2 f �(x) � ex � 0, so f (x) is convex on S � R1.

3 f �(x) � �x�3/2/4 � 0, so f (x) is a concave function on S(0, ∞).

4 f �(x) � 0, so f (x) is both convex and concave on S � R1. 

How can we determine whether a function f (x1, x2, . . . , xn) of n variables is convex or
concave on a set S � Rn? We assume that f (x1, x2, . . . , xn) has continous second-order
partial derivatives. Before stating the criterion used to determine whether f (x1, x2, . . . , xn)
is convex or concave, we require three definitions.

D E F I N I T I O N ■ The Hessian of f (x1, x2, . . . , xn) is the n � n matrix whose ijth entry is

�
∂
∂
xi

2

∂
f

xj

� ■

We let H(x1, x2, . . . , xn) denote the value of the Hessian at (x1, x2, . . . , xn). For ex-
ample, if f (x1, x2) � x3

1 � 2x1x2 � x2
2, then

H(x1, x2) � � 

D E F I N I T I O N ■ An ith principal minor of an n � n matrix is the determinant of any i � i
matrix obtained by deleting n � i rows and the corresponding n � i columns of
the matrix. ■

Thus, for the matrix

� 
the first principal minors are �2 and �4, and the second principal minor is �2(�4) �
(�1)(�1) � 7. For any matrix, the first principal minors are just the diagonal entries of
the matrix.

�2 �1

�1 �4

6x1 2

2x1 2

Determining If a Function Is Convex or ConcaveE X A M P L E  1 6

T H E O R E M  2�
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D E F I N I T I O N ■ The kth leading principal minor of an n � n matrix is the determinant of the 
k � k matrix obtained by deleting the last n � k rows and columns of the 
matrix. ■

We let Hk(x1, x2, . . . , xn) be the kth leading principal minor of the Hessian matrix 
evaluated at the point (x1, x2, . . . , xn). Thus, if f (x1, x2) � x 3

1 � 2x1x2 � x 2
2, then 

H1(x1, x2) � 6x1, and H2(x1, x2) � 6x1(2) � 2(2) � 12x1 � 4.
By applying Theorems 3 and 3	 (stated below, without proof ), the Hessian matrix can

be used to determine whether f (x1, x2, . . . , xn) is a convex or a concave (or neither) func-
tion on a convex set S � Rn. [See Bazaraa and Shetty pages 91–93 (1993) for proof of
Theorems 3 and 3	.]

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each
point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a convex function on S if
and only if for each x � S, all principal minors of H are nonnegative.

Show that f (x1, x2) � x2
1 � 2x1x2 � x2

2 is a convex function on S � R2.

Solution We find that

H(x1, x2) � � 
The first principal minors of the Hessian are the diagonal entries (both equal 2 � 0). The
second principal minor is 2(2) � 2(2) � 0 � 0. For any point, all principal minors of H
are nonnegative, so Theorem 3 shows that f (x1, x2) is a convex function on R2.

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each
point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a concave function on S if
and only if for each x � S and k � 1, 2, . . . , n, all nonzero principal minors have
the same sign as (�1)k.

Show that f (x1, x2) � �x2
1 � x1x2 � 2x2

2 is a concave function on R2.

Solution We find that

H(x1, x2) � � 
The first principal minors are the diagonal entries of the Hessian (�2 and �4). These are
both nonpositive. The second principal minor is the determinant of H(x1, x2) and equals
�2(�4) � (�1)(�1) � 7 � 0. Thus, f (x1, x2) is a concave function on R2. 

�2 �1

�1 �4

2 2

2 2

Using the Hessian to Ascertain Convexity or Concavity 1E X A M P L E  17

T H E O R E M  3

T H E O R E M  3�

Using the Hessian to Ascertain Convexity or Concavity 2E X A M P L E  1 8
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Show that for S � R2, f (x1, x2) � x2
1 � 3x1x2 � 2x2

2 is not a convex or a concave function.

Solution We have

H(x1, x2) � � 
The first principal minors of the Hessian are 2 and 4. Because both the first principal mi-
nors are positive, f (x1, x2) cannot be concave. The second principal minor is 2(4) �
(�3)(�3) � �1 � 0. Thus, f (x1, x2) cannot be convex. Together, these facts show that
f (x1, x2) cannot be a convex or a concave function. 

Show that for S � R3, f (x1, x2, x3) � x2
1 � x2

2 � 2x2
3 � x1x2 � x2x3 � x1x3 is a convex

function.

Solution The Hessian is given by

H(x1, x2, x3) � � 
By deleting rows (and columns) 1 and 2 of Hessian, we obtain the first-order princi-

pal minor 4 � 0. By deleting rows (and columns) 1 and 3 of Hessian, we obtain the first-
order principal minor 2 � 0. By deleting rows (and columns) 2 and 3 of Hessian, we ob-
tain the first-order principal minor 2 � 0.

By deleting row 1 and column 1 of Hessian, we find the second-order principal minor

det �  � 7 � 0.

By deleting row 2 and column 2 of Hessian, we find the second-order principal minor

det �  � 7 � 0

By deleting row 3 and column 3 of Hessian, we find the second-order principal minor

det �  � 3 � 0.

The third-order principal minor is simply the determinant of the Hessian itself. Ex-
panding by row 1 cofactors we find the third-order principal minor

2[(2)(4) � (�1)(�1)] � (�1)[(�1)(4) � (�1)(�1)]

�(�1)[(�1)(�1) � (�1)(2)] � 14 � 5 � 3 � 6 � 0.

Because for all (x1, x2, x3) all principal minors of the Hessian are nonnegative, we have
shown that f (x1, x2, x3) is a convex function on R3. 

�2 �1

�1 �2

�2 �1

�1 �4

�2 �1

�1 �4

�2 �1 �1

�1 �2 �1

�1 �1 �4

�2 �3

�3 �4

Using the Hessian to Ascertain Convexity or Concavity 3E X A M P L E  1 9

Using the Hessian to Ascertain Convexity or Concavity 4E X A M P L E  2 0
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P R O B L E M S
Group A

On the given set S, determine whether each function is
convex, concave, or neither.

1 f(x) � x3; S � [0, ∞)

2 f(x) � x3; S � R1

3 f(x) � �
1
x

�; S � (0, ∞)

4 f(x) � xa (0 � a � 1); S � (0, ∞)

5 f(x) � ln x; S � (0, ∞)

6 f(x1, x2) � x3
1 � 3x1x2 � x2

2; S � R2

7 f(x1, x2) � x2
1 � x2

2; S � R2

8 f(x1, x2) � �x2
1 � x1x2 � 2x2

2; S � R2

9 f(x1, x2, x3) � �x2
1 � x2

2 � 2x2
3 � .5x1x2; S � R3

10 For what values of a, b, and c will ax2
1 � bx1x2 � cx2

2

be a convex function on R2? A concave function on R2? 

Group B

11 Prove Theorem 1	.

12 Show that if f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) are
convex functions on a convex set S, then h(x1, x2, . . . , xn) �
f (x1, x2, . . . , xn) � g(x1, x2, . . . , xn) is a convex function 
on S.

13 If f(x1, x2, . . . , xn) is a convex function on a convex set
S, show that for c � 0, g(x, x2, . . . , xn) � cf(x1, x2, . . . , xn)
is a convex function on S, and for c � 0, g(x1, x2, . . . , xn) �
cf(x1, x2, . . . , xn) is a concave function on S. 

14 Show that if y � f(x) is a concave function on R1, then
z � �

f (
1
x)
� is a convex function [assume that f(x) � 0].

15 A function f (x1, x2, . . . , xn) is quasi-concave on a
convex set S � Rn if x	 � S, x� � S, and 0 � c � 1 implies

f [cx	 � (1 � c)x�] � min[ f (x	), f (x�)]
Show that if f is concave on R1, then f is quasi-concave.
Which of the functions in Figure 19 is quasi-concave? Is a
quasi-concave function necessarily a concave function?

16 From Problem 12, it follows that the sum of concave

functions is concave. Is the sum of quasi-concave functions
necessarily quasi-concave?

17 Suppose a function’s Hessian has both positive and
negative entries on its diagonal. Show that the function is
neither concave nor convex.

18 Show that if f(x) is a non-negative, increasing concave
function, then ln [ f(x)] is also a concave function.

19 Show that if a function f (x1, x2, . . . , xn) is quasi-
concave on a convex set S, then for any number a the set 
Sa � all points satisfying f(x1, x2, . . . , xn) � a is a convex set.

20 Show that Theorem 1 is untrue if f is a quasi-concave
function.

21 Suppose the constraints of an NLP are of the form
gi(x1, x2, . . . , xn) � bi(i � 1, 2, . . . m). Show that if each of
the gi is a convex function, then the NLP’s feasible region
is convex.

Group C

22 If f(x1, x2) is a concave function on R2, show that for
any number a, the set of (x1, x2) satisfying f(x1, x2) � a is
a convex set.

23 Let Z be a N(0, 1) random variable, and let F(x) be the
cumulative distribution function for Z. Show that on S �
(�∞, 0], F(x) is an increasing convex function, and on S �
[0, ∞), F(x) is an increasing concave function.

24 Recall the Dakota LP discussed in Chapter 6. Let v(L,
FH, CH) be the maximum revenue that can be earned when
L sq board ft of lumber, FH finishing hours, and CH
carpentry hours are available.

a Show that v(L, FH, CH) is a concave function.
b Explain why this result shows that the value of each
additional available unit of a resource must be a nonin-
creasing function of the amount of the resource that is
available.

a b c

F I G U R E  19
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11.4 Solving NLPs with One Variable
In this section, we explain how to solve the NLP

max (or min) f (x)

s.t. x � [a, b] (5)

[If b � ∞, then the feasible region for NLP (5) is x � a, and if a � �∞, then the feasi-
ble region for (5) is x � b.]

To find the optimal solution to (5), we find all local maxima (or minima). A point that is
a local maximum or a local minimum for (5) is called a local extremum. Then the optimal
solution to (5) is the local maximum (or minimum) having the largest (or smallest) value of
f (x). Of course, if a � �∞ or b � ∞, then (5) may have no optimal solution (see Figure 20). 

There are three types of points for which (5) can have a local maximum or minimum
(these points are often called extremum candidates):

Case 1 Points where a � x � b, and f 	(x) � 0 [called a stationary point of f (x)].

Case 2 Points where f 	(x) does not exist.

Case 3 Endpoints a and b of the interval [a, b].

Case 1. Points Where a � x � b and f 	(x) � 0

Suppose a � x � b, and f 	(x0) exists. If x0 is a local maximum or a local minimum, then
f 	(x0) � 0. To see this, look at Figures 21a and 21b. From Figure 21a, we see that if f 	(x0)
� 0, then there are points x1 and x2 near x0 where f (x1) � f (x0) and f (x2) � f (x0). Thus,
if f 	(x0) � 0, x0 cannot be a local maximum or a local minimum. Similarly, Figure 21b
shows that if f 	(x0) � 0, then x0 cannot be a local maximum or a local minimum. From
Figures 21c and 21d, however, we see f 	(x0) � 0, then x0 may be a local maximum or a
local minimum. Unfortunately, Figure 21e shows that f 	(x0) can equal zero without x0 be-
ing a local maximum or a local minimum. From Figure 21c, we see that if f 	(x) changes
from positive to negative as we pass through x0, then x0 is a local maximum. Thus, if
f �(x0) � 0, x0 is a local maximum. Similarly, from Figure 21d, we see that if f 	(x) changes
from negative to positive as we pass through x0, x0 is a local minimum. Thus, if f �(x0) �
0, x0 is a local minimum.

y

y = f(x)

a  max f(x)
    s.t.  x    (–�, b] 

x
b

y

y = f(x)

b  max f(x)
    s.t.  x    [a, �)  

x
a

F I G U R E  20
NLPs with No Solution
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If f 	(x0) � 0 and f �(x0) � 0, then x0 is a local maximum. If f 	(x0) � 0 and f �(x0)
� 0, then x0 is a local minimum.

What happens if f 	(x0) � 0 and f �(x0) � 0 (this is the case in Figure 21e)? In this case,
we determine whether x0 is a local maximum or a local minimum by applying Theorem 5.

T H E O R E M  4

y

y = f(x)

x
ba x1 x0 x2

y

y = f(x)

c   f (x0) = 0
     For x < x0, f (x) > 0
     For x > x0, f (x) < 0
    x0 is a local maximum

x
ba x0

y

y = f(x)

b   f (x0) < 0
     f (x1) > f(x0)
    f (x2) < f(x0)
    x0 not a local extremum

x
ba x1 x0 x2

y

y = f(x)

e   x0 = 0 not a local maximum
          or a local minimum
          but f (x0) = 0

x
bx0 = 0a

y

y = f(x)

x
ba

x0

a   f (x0) > 0
     f (x1) < f(x0)
    f (x2) > f(x0)
    x0 not a local extremum

d   f (x0) = 0
     For x < x0, f (x) < 0
     For x > x0, f (x) > 0
    x0 is a local maximum

F I G U R E  21
How to Determine

Whether x0 Is a 
Local Maximum or a

Local Minimum When
f �(x0) Exists
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If f 	(x0) � 0, and

1 If the first nonvanishing (nonzero) derivative at x0 is an odd-order derivative
[ f (3) (x0), f (5) (x0), and so on], then x0 is not a local maximum or a local minimum.

2 If the first nonvanishing derivative at x0 is positive and an even-order derivative,
then x0 is a local minimum.

3 If the first nonvanishing derivative at x0 is negative and an even-order derivative,
then x0 is a local maximum.

We omit the proofs of Theorems 4 and 5. [They follow in a straightforward fashion by
applying the definition of a local maximum and a local minimum to the Taylor series ex-
pansion of f (x) about x0.] Theorem 4 is a special case of Theorem 5. We ask you to prove
Theorems 4 and 5 in Problems 16 and 17.

Case 2. Points Where f�(x) Does Not Exist

If f (x) does not have a derivative at x0, x0 may be a local maximum, a local minimum, or
neither (see Figure 22). In this case, we determine whether x0 is a local maximum or a
local minimum by checking values of f (x) at points x1 � x0 and x2 � x0 near x0. The four
possible cases that can occur are summarized in Table 9.

y

y = f(x)

a  x0 not a local extremum

x
x1 x0 x2

y

y = f(x)

b  x0 not a local extremum

x
x1 x0 x2

y

y = f(x)

c  x0 is a local maximum

x
x1 x0 x2

y

y = f(x)

d  x0 is a local minimum

x
x1 x0 x2

F I G U R E  22
How to Determine

Whether x0 Is a Local
Maximum or a Local

Minimum When f �(x0)
Does Not Exist

T H E O R E M  5
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Case 3. Endpoints a and b of [a, b]

From Figure 23, we see that

If f 	(a) � 0, then a is a local minimum.

If f 	(a) � 0, then a is a local maximum.

If f 	(b) � 0, then b is a local maximum.

If f 	(b) � 0, then b is a local minimum.

If f 	(a) � 0 or f 	(b) � 0, draw a sketch like Figure 22 to determine whether a or b is a
local extremum.

The following examples illustrate how these ideas can be applied to solve NLPs of the
form (5).

TA B L E  9
How to Determine Whether a Point Where f 	(x) Does Not Exist Is a Local Maximum
or a Local Minimum

Relationship Between
f (x0), f (x1), and f (x2) x0 Figure

f (x0) � f (x1); f (x0) � f (x2) Not local extremum 16a
f (x0) � f (x1); f (x0) � f (x2) Not local extremum 16b
f (x0) � f (x1); f (x0) � f (x2) Local maximum 16c
f (x0) � f (x1); f (x0) � f (x2) Local minimum 16d

F I G U R E  23
How to Determine

Whether x0 Is a 
Local Maximum or a
Local Minimum If x0

Is an Endpoint

y

y = f(x)

a  f (a) > 0
   a is a local minimum

b  f (a) < 0
   a is a local maximum

x
a b a b

y

y = f(x)

x

y

y = f(x)

c  f (b) > 0
   b is a local maximum

x
a b a b

y

y = f(x)

d  f (b) < 0
   b is a local minimum

x



1 1 . 4 Solving NLPs with One Variable 641

It costs a monopolist $5/unit to produce a product. If he produces x units of the product,
then each can be sold for 10 � x dollars (0 � x � 10). To maximize profit, how much
should the monopolist produce?

Solution Let P(x) be the monopolist’s profit if he produces x units. Then

P(x) � x(10 � x) � 5x � 5x � x2 (0 � x � 10)

Thus, the monopolist wants to solve the following NLP:

max P(x)x � 10

s.t. 0 � x � 10

We now classify all extremum candidates:

Case 1 P	(x) � 5 � 2x, so P	(2.5) � 0. Because P �(x) � �2, x � 2.5 is a local maxi-
mum yielding a profit of P(2.5) � 6.25.

Case 2 P	(x) exists for all points in [0, 10], so there are no Case 2 candidates.

Case 3 a � 0 has P	(0) � 5 � 0, so a � 0 is a local minimum; b � 10 has P	(10) �
�15 � 0, so b � 10 is a local minimum.

Thus, x � 2.5 is the only local maximum. This means that the monopolist’s profits are
maximized by choosing x � 2.5.

Observe that P�(x) � �2 for all values of x. This shows that P(x) is a concave func-
tion. Any local maximum for P(x) must be the optimal solution to the NLP. Thus, Theo-
rem 1 implies that once we have determined that x � 2.5 is a local maximum, we know
that it is the optimal solution to the NLP.

Let

f (x) � 2 � (x � 1)2)2 for 0 � x � 3

f (x) � �3 � (x � 4)2 for 3 � x � 6

Find

max f (x)x � 6

s.t. 0 � x � 6

Solution Case 1 For 0 � x � 3, f 	(x) � �2(x � 1) and f �(x) � �2. For 3 � x � 6, f 	(x) �
2(x � 4) and f �(x) � 2. Thus, f 	(1) � f 	(4) � 0. Because f �(1) � 0, x � 1 is a local
maximum. Because f �(4) � 0, x � 4 is a local minimum.

Case 2 From Figure 24, we see that f (x) has no derivative at x � 3 (for x slightly less than
3, f 	(x) is near �4, and for x slightly bigger than 3, f 	(x) is near �2). Because f (2.9) �
�1.61, f (3) � �2, and f (3.1) � �2.19, x � 3 is not a local extremum.

Case 3 Because f 	(0) � 2 � 0, x � 0 is a local minimum. Because f 	(6) � 4 � 0, x �
6 is a local maximum.

Thus, on [0, 6], f (x) has a local maximum for x � 1 and x � 6. Because f (1) � 2 and
f (6) � 1, we find that the optimal solution to the NLP occurs for x � 1.

Profit Maximization by MonopolistE X A M P L E  2 1

Finding Global Maximum When Endpoint Is a MaximumE X A M P L E  2 2
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Decision Making under Uncertainty

We have all had to make important decisions where we were uncertain about factors that were
relevant to the decisions. In this chapter, we study situations in which decisions are made in
an uncertain environment.

The following model encompasses several aspects of making a decision in the absence of
certainty. The decision maker first chooses an action ai from a set A � {a1, a2, . . . , ak} of avail-
able actions. Then the state of the world is observed; with probability pj, the state of the world
is observed to be sj � S � {s1, s2, . . . , sn}. If action ai is chosen and the state of the world is
sj, the decision maker receives a reward rij. We refer to this model as the state-of-the-world
decision-making model.

This chapter presents the basic theory of decision making under uncertainty: the widely used
Von Neumann–Morgenstern utility model, and the use of decision trees for making decisions at
different points in time. We close by looking at decision making with multiple objectives.

13.1 Decision Criteria
In this section, we consider four decision criteria that can be used to make decisions un-
der uncertainty.

E X A M P L E  1

News vendor Phyllis Pauley sells newspapers at the corner of Kirkwood Avenue and In-
diana Street, and each day she must determine how many newspapers to order. Phyllis
pays the company 20¢ for each paper and sells the papers for 25¢ each. Newspapers that
are unsold at the end of the day are worthless. Phyllis knows that each day she can sell
between 6 and 10 papers, with each possibility being equally likely. Show how this prob-
lem fits into the state-of-the-world model.

Solution In this example, the members of S � {6, 7, 8, 9, 10} are the possible values of the daily
demand for newspapers. We are given that p6 � p7 � p8 � p9 � p10 � �

1
5

�. Phyllis must
choose an action (the number of papers to order each day) from A � {6, 7, 8, 9, 10}.

If Phyllis purchases i papers and j papers are demanded, then i papers are purchased
at a cost of 20i¢, and min(i, j) papers are sold for 25¢ each.† Thus, if Phyllis purchases i
papers and j papers are demanded, she earns a net profit of rij, where

rij � 25i � 20i � 5i (i � j)

rij � 25j � 20i (i � j)

The values of rij are tabulated in Table 1.

Newspaper Vendor

†min(i, j) is the smaller of i and j.



Dominated Actions

Why did we not consider the possibility that Phyllis would order 1, 2, 3, 4, 5, or more than
10 papers? Answering this question involves the idea of a dominated action.

D E F I N I T I O N ■

If action ai is dominated, then in no state of the world is ai better than ai�, and in at least
one state of the world ai is inferior to ai�. Thus, if action ai is dominated, there is no rea-
son to choose ai (ai� would be a better choice).

If Phyllis orders i papers (i � 1, 2, 3, 4, 5), she will earn (for all states of the world) a
profit of 5i¢. From the table of rewards, we see that, for i � 1, 2, 3, 4, 5, ordering 6 pa-
pers dominates ordering i papers ( j� � 6, 7, 8, 9, or 10 will do). Similarly, the reader
should check that ordering i papers (i � 11) is dominated by ordering 10 papers (see Prob-
lem 3 at the end of this section). A quick check shows that none of the actions in A �
{6, 7, 8, 9, 10} are dominated. Thus, Phyllis should indeed choose her action from A �
{6, 7, 8, 9, 10}.

We now discuss four criteria that can be used to choose an action.

The Maximin Criterion

For each action, determine the worst outcome (smallest reward). The maximin criterion
chooses the action with the “best” worst outcome.

D E F I N I T I O N ■

For Example 1, we obtain the results in Table 2. Thus, the maximin criterion recom-
mends ordering 6 papers. This ensures that Phyllis will, no matter what the state of the
world, earn a profit of at least 30¢. The maximin criterion is concerned with making the
worst possible outcome as pleasant as possible. Unfortunately, choosing a decision to mit-
igate the worst case may prevent the decision maker from taking advantage of good for-
tune. For example, if Phyllis follows the maximin criterion, she will never make less than
30¢, but she will never make more than 30¢.

The maximin criterion chooses the action ai with the largest value of 
minj�S rij. ■

An action ai is dominated by an action ai� if for all sj � S, rij � ri�j, and for
some state sj�, rij� 	 ri�j�. ■
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TA B L E  1
Rewards for News Vendor

Papers Demanded

Papers 
Ordered 6 7 8 9 10

6 30¢ 30¢ 30¢ 30¢ 30¢
7 10¢ 35¢ 35¢ 35¢ 35¢
8 �10¢ 15¢ 40¢ 40¢ 40¢
9 �30¢ �5¢ 20¢ 45¢ 45¢

10 �50¢ �25¢ 0¢ 25¢ 50¢



The Maximax Criterion

For each action, determine the best outcome (largest reward). The maximax criterion
chooses the action with the “best” best outcome.

D E F I N I T I O N ■

For Example 1, we obtain the results in Table 3. Thus, the maximax criterion would rec-
ommend ordering 10 papers. In the best state (when 10 papers are demanded), this yields
a profit of 50¢. Of course, making a decision according to the maximax criterion leaves
Phyllis open to the disastrous possibility that only 6 papers will be demanded, in which
case she loses 50¢.

Minimax Regret

The minimax regret criterion (developed by L. J. Savage) uses the concept of opportunity
cost to arrive at a decision. For each possible state of the world sj, find an action i*( j) that
maximizes rij. That is, i*( j) is the best possible action to choose if the state of the world
is actually sj. Then for any action ai and state sj, the opportunity loss or regret for ai in sj

is ri*( j), j � rij. For example, if j � 7 papers are demanded, the best decision is to order
i*(7) � 7 papers, yielding a profit of r77 � 7(25) � 7(20) � 35¢. Suppose we chose to
order i � 6 papers. Since r67 � 6(25) � 6(20) � 30¢, the opportunity loss or regret for
i � 6 and j � 7 is 35 � 30 � 5¢. Thus, if we order 6 papers and 7 papers are demanded,
in hindsight we realize that by making the optimal choice (ordering 7 papers) for the ac-
tual state of the world (7 papers demanded), we would have done 5¢ better than we did
by ordering 6 papers. Table 4 shows the opportunity cost or regret matrix for Example 1.

The maximax criterion chooses the action ai with the largest value of 
maxj�S rij. ■
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TA B L E  2
Computation of Maximin Decision for News Vendor

Papers Worst State Reward in Worst State
Ordered of the World of the World

6 6, 7, 8, 9, 10 30¢
7 6 10¢
8 6 �10¢
9 6 �30¢

10 6 �50¢

TA B L E  3
Computation of Maximax Decision for News Vendor

Papers State Yielding
Ordered Best Outcome Best Outcome

6 6, 7, 8, 9, 10 30¢
7 7, 8, 9, 10 35¢
8 8, 9, 10 40¢
9 9, 10 45¢

10 10 50¢



The minimax regret criterion chooses an action by applying the minimax criterion to the
regret matrix. In other words, the minimax regret criterion attempts to avoid disappoint-
ment over what might have been. From the regret matrix in Table 4, we obtain the mini-
max regret decision in Table 5. Thus, the minimax regret criterion recommends ordering
6 or 7 papers.

The Expected Value Criterion

The expected value criterion chooses the action that yields the largest expected reward.
For Example 1, the expected value criterion would recommend ordering 6 or 7 papers (see
Table 6).

The decision-making criteria discussed in this section may seem reasonable, but many
people make decisions without using any of them. A more comprehensive model of indi-
vidual decision making, the Von Neumann–Morgenstern utility model, is discussed in
Section 13.2.
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TA B L E  4
Regret Matrix for News Vendor

Papers Demanded

Papers 
Ordered 6 7 8 9 10

6 30 � 30 � 0¢ 35 � 30 � 5¢ 40 � 30 � 10¢ 45 � 30 � 15¢ 50 � 30 � 20¢
7 30 � 10 � 20¢ 35 � 35 � 0¢ 40 � 35 � 5¢ 45 � 35 � 10¢ 50 � 35 � 15¢
8 30 
 10 � 40¢ 35 � 15 � 20¢ 40 � 40 � 0¢ 45 � 40 � 5¢ 50 � 40 � 10¢
9 30 
 30 � 60¢ 35 
 5 � 40¢ 40 � 20 � 20¢ 45 � 45 � 0¢ 50 � 45 � 5¢

10 30 
 50 � 80¢ 35 
 25 � 60¢ 40 � 0 � 40¢ 45 � 25 � 20¢ 50 � 50 � 0¢

TA B L E  5
Computation of Minimax Regret Decision
for News Vendor

Papers Ordered Maximum Regret

6 20¢
7 20¢
8 40¢
9 60¢

10 80¢

TA B L E  6
Computation of Expected Value Decision for News Vendor

Papers Ordered Expected Reward

6 �
1
5

� (30 
 30 
 30 
 30 
 30) � 30¢
7 �

1
5

� (10 
 35 
 35 
 35 
 35) � 30¢
8 �

1
5

� (�10 
 15 
 40 
 40 
 40) � 25¢
9 �

1
5

� (�30 � 5 
 20 
 45 
 45) � 15¢
10 �

1
5

� (�50 � 25 
 0 
 25 
 50) � 0¢



1 Pizza King and Noble Greek are two competing
restaurants. Each must determine simultaneously whether to
undertake small, medium, or large advertising campaigns.
Pizza King believes that it is equally likely that Noble Greek
will undertake a small, a medium, or a large advertising
campaign. Given the actions chosen by each restaurant,
Pizza King’s profits are as shown in Table 7. For the
maximin, maximax, and minimax regret criteria, determine
Pizza King’s choice of advertising campaign.
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P R O B L E M S
Group A

the present time. Considering the reward for each action and
state of the world to be in terms of net present value, use
each decision criterion of this section to determine whether
Sodaco should build the plant.

3 For Example 1, show that ordering 11 or more papers is
dominated by ordering 10 papers.

Group B

4 Suppose that Pizza King and Noble Greek stop
advertising but must determine the price they will charge
for each pizza sold. Pizza King believes that Noble Greek’s
price is a random variable D having the following mass
function: P (D � $6) � .25, P (D � $8) � .50, P (D �
$10) � .25. If Pizza King charges a price p1 and Noble
Greek charges a price p2, Pizza King will sell 100 

25( p2 � p1) pizzas. It costs Pizza King $4 to make a pizza.
Pizza King is considering charging $5, $6, $7, $8, or $9 for
a pizza. Use each decision criterion of this section to
determine the price that Pizza King should charge.

5 Alden Construction is bidding against Forbes Construction
for a project. Alden believes that Forbes’s bid is a random
variable B with the following mass function: P (B �
$6,000) � .40, P(B � $8,000) � .30, P(B � $11,000) � .30.
It will cost Alden $6,000 to complete the project. Use each of
the decision criteria of this section to determine Alden’s bid.
Assume that in case of a tie, Alden wins the bidding. 
(Hint: Let p � Alden’s bid. For p � 6,000, 6,000 	
p � 8,000, 8,000 	 p � 11,000, and p � 11,000, determine
Alden’s profit in terms of Alden’s bid and Forbes’s bid.)

2 Sodaco is considering producing a new product:
Chocovan soda. Sodaco estimates that the annual demand
for Chocovan, D (in thousands of cases), has the following
mass function: P (D � 30) � .30, P (D � 50) � .40, 
P(D � 80) � .30. Each case of Chocovan sells for $5 and
incurs a variable cost of $3. It costs $800,000 to build a
plant to produce Chocovan. Assume that if $1 is received
every year (forever), this is equivalent to receiving $10 at

13.2 Utility Theory
We now show how the Von Neumann–Morgenstern concept of a utility function can be
used as an aid to decision making under uncertainty.

Consider a situation in which a person will receive, for i � 1, 2, . . . , n, a reward ri

with probability pi. This is denoted as the lottery ( p1, r1; p2, r2; . . . ; pn, rn). A lottery is
often represented by a tree in which each branch stands for a possible outcome of the lot-
tery, and the number on each branch represents the probability that the outcome will oc-
cur. Thus, the lottery (�

1
4

�, $500; �
3
4

�, $0) could be denoted by

TA B L E  7

Noble Greek Chooses

Pizza King
Chooses Small Medium Large

Small $6,000 $5,000 $2,000
Medium $5,000 $6,000 $1,000
Large $9,000 $6,000 $0

�
1
4

�

$500

�
3
4

�

$0

Suppose we are asked to choose between two lotteries (L1 and L2). With certainty, lot-
tery L1 yields $10,000:

L1 �
1
� $10,000



Lottery L2 consists of tossing a coin. If heads comes up, we receive $30,000, and if tails
comes up, we receive $0:
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L1 yields an expected reward of $10,000, and L2 yields an expected reward of (�
1
2

�)(30,000) 

(�

1
2

�)(0) � $15,000. Although L2 has a larger expected value than L1, most people prefer L1 to
L2 because L1 offers the certainty of a relatively large payoff, whereas L2 yields a substantial
(�

1
2

�) chance of earning a reward of $0. In short, most people prefer L1 to L2 because L1 in-
volves less risk (or uncertainty) than L2.

Our goal is to determine a method that a person can use to choose between lotteries.
Suppose he or she must choose to play L1 or L2 but not both. We write L1pL2 if the per-
son prefers L1. We write L1iL2 if he or she is indifferent between choosing L1 and L2. If
L1iL2, we say that L1 and L2 are equivalent lotteries. Finally, we write L2pL1 if the de-
cision maker prefers L2.

Suppose we ask a decision maker to rank the following lotteries:

�
1
2

�

$30,000

L2
�
1
2

�

$0

The Von Neumann–Morgenstern approach to ranking these lotteries is as follows. Begin
by identifying the most favorable ($30,000) and the least favorable (�$10,000) outcomes
that can occur. For all other possible outcomes (r1 � $10,000, r2 � $500, and r3 � $0),
the decision maker is asked to determine a probability pi such that he or she is indiffer-
ent between two lotteries:

.50
$30,000

L1 �
1
� $10,000 L2

.50
$0

.02
�$10,000

L3 �
1
� $0 L4

.98
$500

pi $30,000

�
1
� ri and

1 � pi �$10,000

.90
$30,000

�
1
� $10,000 and (1)

.10
�$10,000

.62
$30,000

�
1
� $500 and (2)

.38
�$10,000

Suppose that for r1 � $10,000, the decision maker is indifferent between

and for r2 � $500, indifferent between



and for r3 � $0, indifferent between
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Using (1)–(3), the decision maker can construct lotteries L�1, L�2, L�3, and L�4 such that Li�iLi

and each Li� involves only the best ($30,000) and the worst (�$10,000) possible out-
comes. Thus, from (1), we find that L1iL�1, where

From (3), we find that L2iL�2, where

.60
$30,000

�
1
� $0 and (3)

.40
�$10,000

L�2 is a compound lottery in which with probability .50 we receive $30,000 and with
probability .50 we play a lottery yielding a .60 chance at $30,000 and a .40 chance at
�$10,000. More formally, a lottery L is a compound lottery if for some i, there is a prob-
ability pi that the decision maker’s reward is to play another lottery L�. The following is
an example of a compound lottery:

.90
$30,000

L�1
.10

�$10,000

Thus, with probability .50, L yields a reward of �$4, and with probability .50, L causes
us to play L�. If a lottery is not a compound lottery, it is a simple lottery.

Returning to our discussion of L�2, we observe that L�2 is a lottery that yields a .50 

.50(.60) � .80 chance at $30,000 and a .40(.50) � .20 chance at �$10,000. Thus,
L2iL�2iL�2, where

.50
$30,000

L�2 .60 $30,000
.50

.40
�$10,000

Similarly, using (3), we find that L3iL�3, where

.60
$6

.50 (L�)
.40

�$4
L

.50
�$4

.80
$30,000

L�2
.20

�$10,000

.60
$30,000

L�3
.40

�$10,000



Using (2), we find that the decision maker is indifferent between L4 and L�4, where
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In actuality, however, L4� yields a .98(.62) � .6076 chance at $30,000 and a .02 
 .38(.98) �
.3924 chance at �$10,000. Thus, L4iL�4 iL�4, where

Since LiiLi�, we may rank L1, L2, L3, and L4 by ranking L�1, L�2, L�3, and L�4. Consider two
lotteries whose only possible outcomes are $30,000 (the most favorable outcome) and
�$10,000 (the least favorable outcome). If he or she is given a choice between two lot-
teries of this type, the decision maker simply chooses the lottery with the larger chance
of receiving the most favorable outcome. Applying this idea to L1� through L4� yields
L�1pL�2pL�4pL�3. Since LiiLi�, we may conclude that L1pL2pL4pL3.

We now give a more formal description of the process that we have used to rank L1,
L2, L3, and L4. The utility of the reward ri, written u(ri), is the number qi such that the
decision maker is indifferent between the following two lotteries:

.02
�$10,000

L�4 .62 $30,000
.98

.38
�$10,000

.6076
$30,000

L�4
.3924

�$10,000

This definition forces u(least favorable outcome) � 0 and u(most favorable outcome) �
1. For our possible payoffs of $30,000, �$10,000, $0, $500, and $10,000, we first 
find that u($30,000) � 1 and u(�$10,000) � 0. Then (1)–(3) yield u($10,000) � .90,
u($500) � .62, and u($0) � .60. The specification of u(ri) for all rewards ri is called the
decision maker’s utility function.

For a given lottery L � ( p1, r1; p2, r2; . . . ; pn, rn), define the expected utility of the
lottery L, written E(U for L), by

E(U for L) � �
i�n

i�1

piu(ri)

Thus, in our example

E(U for L1) � 1(.90) � .90

E(U for L2) � .50(1) 
 .50(.60) � .80

E(U for L3) � 1(.60) � .60

E(U for L4) � .02(0) 
 .98(.62) � .6076

Recall that we found that LiiLi�, where Li� yielded an E(U for Li) chance at $30,000 and
a 1 � E(U for Li) chance at �$10,000. Thus, in choosing between lotteries L�1, L�2, L�3,
and L�4 (or equivalently, L1, L2, L3, and L4), we simply chose the lottery with the largest

qi Most favorable outcome

�
1
� ri and

1 � qi Least favorable outcome



expected utility. Given two lotteries L1 and L2, we may choose between them via the ex-
pected utility criteria:

L1pL2 if and only if E(U for L1) � E(U for L2)

L2pL1 if and only if E(U for L2) � E(U for L1)

L1iL2 if and only if E(U for L2) � E(U for L1)

Von Neumann–Morgenstern Axioms

Von Neumann and Morgenstern proved that if a person’s preferences satisfy the follow-
ing axioms, then he or she should choose between lotteries by using the expected utility
criterion.

Axiom 1: Complete Ordering Axiom

For any two rewards r1 and r2, one of the following must be true: The decision maker (1)
prefers r1 to r2, (2) prefers r2 to r1, or (3) is indifferent between r1 and r2. Also, if the 
person prefers r1 to r2 and r2 to r3, then he or she must prefer r1 to r3 (transitivity of 
preferences).

In our discussion, we used the Complete Ordering Axiom to determine the most and
least favorable outcomes.

Axiom 2: Continuity Axiom

If the decision maker prefers r1 to r2 and r2 to r3, then for some c(0 	 c 	 1), L1iL2,
where
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In our informal discussion, we used the Continuity Axiom when we found, for exam-
ple, that L3iL�3, where

c
r1

L1 �
1
� r2 L2

1 � c
r3

.60
$30,000

L3 �
1
� $0 L�3

.40
�$10,000

Axiom 3: Independence Axiom

Suppose the decision maker is indifferent between rewards r1 and r2. Let r3 be any other
reward. Then for any c (0 	 c 	 1), L1iL2, where

c c
r1 r2

L1 L2
1 � c 1 � c

r3 r3



L1 and L2 differ only in that L1 has a probability c of yielding a reward r1, whereas L2 has
a probability c of yielding a reward r2. Thus, the Independence Axiom implies that the
decision maker views a chance c at r1 and a chance c at r2 to be of identical value, and
this view holds for all values of c and r3. We applied the Independence Axiom when we
used (3) to claim that L2iL�2, where
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Axiom 4: Unequal Probability Axiom

Suppose the decision maker prefers reward r1 to reward r2. If two lotteries have only r1

and r2 as their possible outcomes, he or she will prefer the lottery with the higher prob-
ability of obtaining r1.

We used the Unequal Probability Axiom when we concluded, for example, that L�1 was pre-
ferred to L�2 (because L�1 had a .90 chance at $30,000 and L�2 had only a .80 chance at $30,000).

Axiom 5: Compound Lottery Axiom

Suppose that when all possible outcomes are considered, a compound lottery L yields (for
i � 1, 2, . . . , n) a probability pi of receiving a reward ri. Then LiL�, where L� is the sim-
ple lottery (p1, r1; p2, r2; . . . ; pn, rn).

For example, consider the following compound lottery:

.50
$30,000

L�2 .60 $30,000
.50

.40
�$10,000

.50
$30,000

L2
.50

$0

L yields a .50 
 .50(.40) � .70 chance at �$4 and a .50(.60) � .30 chance at $6. Thus,
Li L�, where

.60
$6

.50 (L�)
.40

�$4
L

.50
�$4

.70
�$4

L�
.30

$6

.50
$30,000

L�2 .60 $30,000
.50

.40
�$10,000

In our informal discussion, we used the Compound Lottery Axiom when, for example, we
stated that the compound equivalent of L2 (L�2)



was equivalent to the following simple lottery:
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Why We May Assume u(Worst Outcome) � 0 
and u(Best Outcome) � 1

Up to now, we have assumed that u(least favorable outcome) � 0 and u(most favorable
outcome) � 1. Even if a decision maker’s utility function does not have these values, we
can transform his or her utility function (without changing the preferences among lotter-
ies) into a utility function having u(least favorable outcome) � 0 and u(most favorable
outcome) � 1.

L E M M A  1

Given a utility function u(x), define for any a � 0 and any b the function v(x) �
au(x) 
 b. Given any two lotteries L1 and L2, it will be the case that

1 A decision maker using u(x) as his or her utility function will have L1pL2 if and
only if a decision maker using v(x) as his or her utility function will have L1pL2.

2 A decision maker using u(x) as his or her utility function will have L1iL2 if and
only if a decision maker using v(x) as his or her utility function will have L1iL2.

Proof Let

L1 � ( p1, r1; p2, r2; . . . ; pn, rn)

L2 � (p�1, r�1; p�2, r�2; . . . ; p�m, r�m)

Suppose the decision maker using u(x) prefers L1 to L2. Then by the expected util-
ity criterion, we know that

�
i�n

i�1

piu(ri) � �
i�m

i�1

pi�u(ri�) (4)

Now the v(x) decision maker will have L1pL2 if

�
i�n

i�1

pi[au(ri) 
 b] � �
i�m

i�1

pi�[au(ri�) 
 b] (5)

Since

�
i�n

i�1

pi � �
i�m

i�1

pi� � 1

(5) simplifies to

a �
i�n

i�1

piu(ri) 
 b � a �
i�m

i�1

pi�u(ri�) 
 b (6)

Since a � 0, (6) follows from (4). Thus, if the u(x) decision maker has L1pL2, the
v(x) decision maker has L1pL2. Similarly, if (6) holds, then (4) will hold. Thus, if
the v(x) decision maker has L1pL2, the u(x) decision maker will also have L1pL2. A
similar argument can be used to prove part (2) of Lemma 1.

.50 
 .50(.60) � .80
$30,000

.50(.40) � .20
�$10,000



Using Lemma 1, we can show that without changing how an individual ranks lotter-
ies, we can transform the decision maker’s utility function into one having u(least favor-
able outcome) � 0 and u(most favorable outcome) � 1. To illustrate, let’s reconsider rank-
ing lotteries L1–L4. Suppose our decision maker’s utility function had u(�$10,000) � �5
and u($30,000) � 10. Define v(x) � au(x) 
 b. Choose a and b so that v($30,000) �
10a 
 b � 1 and v(�$10,000) � �5a 
 b � 0. Then a � �

1
1
5
� and b � �

1
3

�. Then by Lemma
1, the utility function v(x) � �

u
1
(
5
x)
� 
 �

1
3

� will yield the same ranking of lotteries as does u(x),
and we will have constructed v(x) so that v($30,000) � 1 and v(�$10,000) � 0. Thus,
we see that without loss of generality, we may assume that u(least favorable outcome) �
0 and u(most favorable outcome) � 1.

Estimating an Individual’s Utility Function

How might we estimate an individual’s (call her Jill) utility function? We begin by as-
suming that the least favorable outcome (say, �$10,000) has a utility of 0 and that the
most favorable outcome (say, $30,000) has a utility of 1. Next we define a number x1/2

having u(x1/2) � �
1
2

�. To determine x1/2, ask Jill for the number (call it x1/2) that makes her
indifferent between
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�
1
2

�

$30,000 (Most favorable outcome)

�
1
� x1/2 and

�
1
2

�

�$10,000 (Least favorable outcome)

�
1
2

�

x1/2 � �$3,400

�
1
� x1/4 and

�
1
2

�

�$10,000 (Least favorable outcome)

Since Jill is indifferent between the two lotteries, they must have the same expected util-
ity. Thus, u(x1/2) � (�

1
2

�)(1) 
 (�
1
2

�)(0) � �
1
2

�.
This procedure yields a point x1/2 having u(x1/2) � �

1
2

�. Suppose Jill states that x1/2 �
�$3,400. Using x1/2 and the least favorable outcome (�$10,000) as possible outcomes,
we can construct a lottery that can be used to determine the point x1/4 having a utility of
�
1
4

� (that is, u(x1/4) � �
1
4

�). Point x1/4 must be such that Jill is indifferent between

Then u(x1/4) � (�
1
2

�)(�
1
2

�) 
 (�
1
2

�)(0) � �
1
4

�. Thus, x1/4 will satisfy u(x1/4) � �
1
4

�. Suppose Jill states
that x1/4 � �$8,000. This gives us another point on Jill’s utility function.

Jill can now use the x1/2 and $30,000 outcomes to construct a lottery that will yield a
value x3/4 satisfying u(x3/4) � �

3
4

�. (How?) Suppose that x3/4 � $8,000. Similarly, outcomes
of x1/4 and �$10,000 can be used to construct a lottery that will yield a value x1/8 satis-
fying u(x1/8) � �

1
8

�. Now Jill’s utility function can be approximated by drawing a curve
(smooth, we hope) joining the points

(�$10,000, 0), (x1/8, 1/8), (x1/4, 1/4), . . . , ($30,000, 1)

The result is shown in Figure 1. Unfortunately, if a decision maker’s preferences violate
any of the preceding axioms (such as transitivity), this procedure may not yield a smooth
curve. If it does not yield a relatively smooth curve, more sophisticated procedures for as-
sessing utility functions must be used (see Keeney and Raiffa (1976)).



Relation between an Individual’s Utility Function 
and His or Her Attitude toward Risk

A decision maker’s utility function contains information about his or her attitude toward
risk. To discuss this information, we need to define the concepts of a lottery’s certainty
equivalent and risk premium.

D E F I N I T I O N ■

For example, we saw earlier that Jill was indifferent between

The certainty equivalent of a lottery L, written CE(L), is the number CE(L) such
that the decision maker is indifferent between the lottery L and receiving a certain
payoff of CE(L). ■

1 3 . 2 Utility Theory 749

u(x)

x
0–10,000 10,000 20,000 30,000

1.00

.90

.80

.75

.70

.60

.50

.40

.30

.25

.20

.10

F I G U R E  1
Jill’s Utility Function

�
1
2

�

$30,000

�
1
� �$3,400 and L

�
1
2

�

�$10,000

�
1
2

�

$30,000

L
�
1
2

�

�$10,000

Thus, CE(L) � �$3,400.

D E F I N I T I O N ■

For example, if

The risk premium of a lottery L, written RP(L), is given by RP(L) � EV(L) �
CE(L), where EV(L) is the expected value of the lottery’s outcomes. ■



then EV(L) � (�
1
2

�)($30,000) 
 (�
1
2

�)(�$10,000) � $10,000. We have already seen that CE(L) �
�$3,400. Thus, RP(L) � 10,000 � (�3,400) � $13,400; Jill values L at $13,400 less
than its expected value, because she does not like the large degree of uncertainty that is
associated with the reward yielded by L.

Let a nondegenerate lottery be any lottery in which more than one outcome can oc-
cur. With respect to attitude toward risk, a decision maker is

1 Risk-averse if and only if for any nondegenerate lottery L, RP(L) � 0

2 Risk-neutral if and only if for any nondegenerate lottery L, RP(L) � 0

3 Risk-seeking if and only if for any nondegenerate lottery L, RP(L) 	 0

An individual’s attitude toward risk depends on the concavity (or convexity) of his or her
utility function.

D E F I N I T I O N ■

If u(x) is differentiable, then u(x) will be strictly concave if and only if u�(x) 	 0 for
all x and u(x) will be strictly convex if and only if u�(x) � 0 for all x. It can easily be
shown that a decision maker with a utility function u(x) is

1 Risk-averse if and only if u(x) is strictly concave

2 Risk-neutral if and only if u(x) is a linear function (if u(x) is both convex and concave)

3 Risk-seeking if and only if u(x) is strictly convex

To illustrate these definitions, we show that a decision maker with a concave utility
function u(x) exhibits risk-averse behavior (has RP(L) � 0). Consider a binary lottery L
(a lottery with only two possible outcomes):

A function u(x) is said to be strictly concave (or strictly convex) if for any 
two points on the curve y � u(x), the line segment joining those two points 
lies entirely (with the exception of its endpoints) below (or above) the curve 
y � u(x). ■
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Suppose u(x) is strictly concave. Then, from Figure 2, we see that

E(U for L) � p u(x1) 
 (1 � p)u(x2) � y-coordinate of point 1

Since CE(L) is the value x* having u(x*) � E(U for L), Figure 2 shows that CE(L) 	
EV(L), so RP(L) � 0. This follows because the strict concavity of u(x) implies that the
line segment joining the points (x1, u(x1)) and (x2, u(x2)) lies below the curve u(x).

We can also give an algebraic proof that u(x) strictly concave implies that RP(L) �
EV(L) � CE(L) � 0. Recall that for

p
x1

L (Assume x1 	 x2)
1 � p

x2

p
x1

L
1 � p

x2

EV(L) � px1 
 (1 � p)x2. Now the strict concavity of u(x) implies that u[px1 
 (1 �
p)x2] � pu(x1) 
 (1 � p)u(x2) � E(U for L). Thus, the decision maker prefers px1 

(1 � p)x2 � EV(L) with certainty to the prospect of playing L. The certainty equivalent
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of L must be less than px1 
 (1 � p)x2 � EV(L). This implies that RP(L) � EV(L) �
CE(L) � 0, and the decision maker exhibits risk-averse behavior. In Problem 4 at the end
of this section, the reader will be asked to show that if u(x) is strictly convex, the deci-
sion maker exhibits risk-seeking behavior.

If the decision maker is risk-neutral (that is, u(x) � ax 
 b), he or she chooses among
lotteries via the expected reward criterion of Section 13.1 (see Problem 5 at the end of this
section). Thus, when ranking lotteries, a risk-neutral decision maker considers only the
expected value (and not the risk) of the lotteries.

Example 2 illustrates the concepts of risk premium, certainty equivalent, and risk 
aversion.

E X A M P L E  2

Joan’s utility function for her asset position x is given by u(x) � x1/2. Currently, Joan’s as-
sets consist of $10,000 in cash and a $90,000 home. During a given year, there is a .001
chance that Joan’s home will be destroyed by fire or other causes. How much would Joan
be willing to pay for an insurance policy that would replace her home if it were destroyed?

Solution Let x � annual insurance premium. Then Joan must choose between the following 
lotteries:

Joan’s Assets

x
x1

px1 + (1 – p)x2

CE(L)

RP(L)

= EV(L)

1

x2

E(U for L)

F I G U R E  2
Why a Concave Utility

Function Implies 
Risk-Averse Behavior

Asset Position

L1: Buy insurance �
1
� ($100,000 � x)

.001
$100,000 � $90,000 � $10,000

L2: Don’t buy insurance
.999

$100,000

Joan will prefer L1 to L2 if L1’s expected utility exceeds L2’s expected utility. Thus,
L1pL2 if and only if

(100,000 � x)1/2 � .001(10,000)1/2 
 .999(100,000)1/2

� .10 
 315.91154

� 316.01154



Squaring both sides of the last inequality we find that L1pL2 if and only if

100,000 � x � (316.01154)2

x 	 $136.71

Thus, Joan would pay up to $136.71 for insurance. Of course, if p � $136.71, L1iL2.
Let’s compute the risk premium for L2:

EV(L2) � .001(10,000) 
 .999(100,000) � $99,910

(an expected loss of 100,000 � 99,910 � $90). Since E(U for L2) � 316.01154, we can
find CE(L2) from the relation u(CE(L2)) � 316.01154, or [CE(L2)]1/2 � 316.01154. Thus,
CE(L2) � (316.01154)2 � $99,863.29, and

RP(L2) � EV(L2) � CE(L2) � 99,910 � 99,863.29 � $46.71

Therefore, Joan is willing to pay for annual home insurance $46.71 more than the ex-
pected loss of $90. (Recall that Joan was willing to pay up to 90 
 46.71 � $136.71 to
avoid the risk involved in her home being destroyed.) Joan exhibits risk-averse behavior
(RP(L2) � 0). Since

u�(x) � �
�x

4

�3/2

� 	 0

u(x) is strictly concave, and RP(L) � 0 would hold for any nondegenerate lottery.

In reality, many people exhibit both risk-seeking behavior (they purchase lottery tick-
ets, go to Las Vegas) and risk-averse behavior (they buy home insurance). A person whose
utility function contains both convex and concave segments may exhibit both risk-averse
and risk-seeking behavior. Consider a decision maker whose utility function u(x) for
change in current asset position is given in Figure 3. If forced to choose between
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what would this person do?
From Figure 3, we find that u(0) � .20, u(2,500) � .50, and u(�300) � .18. Thus, E(U

for L1) � .20 and E(U for L2) � .10(.50) 
 .90(.18) � .212. Thus, L2pL1. This means that
L2 has a certainty equivalent of at least $0. Since EV(L2) � �$20, this implies that RP(L2) �
EV(L2) � CE(L2) 	 0. The decision maker exhibits risk-seeking behavior in this situation,
because for changes in asset position between $0 and $2,500, u(x) is a convex function.

Now suppose the decision maker can, for $200, insure himself against a loss of $2,000,
which occurs with probability .08. Then he must choose between

.10
$2,500

L1 �
1
� 0 and L2

.90
�$300

.08
�$2,000

L3 �
1
� �$200 and L4

.92
$0

From Figure 3, u(�200) � .19, u(0) � .20, and u(�2,000) � 0. Thus, E(U for L3) � .19
and E(U for L4) � .80(0) 
 .92(.20) � .184, and L3pL4. This shows that CE(L4) 	
�$200. Since EV(L4) � .08(�2,000) 
 .92(0) � �$160, RP(L4) � EV(L4) � CE(L4) �
0, and the decision maker is exhibiting risk-averse behavior, because u(x) is concave for
�2,000 	 x 	 0. Thus, if his utility function has both convex and concave segments, a
person can exhibit both risk-seeking and risk-averse behavior.



Exponential Utility

Classes of “ready-made” utility functions have been developed. One important class is
called exponential utility and has been used in many financial investment analyses. An ex-
ponential utility function has only one adjustable numerical parameter, and there are straight-
forward ways to discover the most appropriate value of this parameter for a particular indi-
vidual or company. So the advantage of using an exponential utility function is that it is
relatively easy to assess. The drawback is that exponential utility functions do not capture
all types of attitudes toward risk. Nevertheless, their ease of use has made them popular.

An exponential utility function has the following form:

U(x) � 1 � e�x/R

Here, x is a monetary value (a payoff if positive, a cost if negative), U(x) is the utility of
this value, and R � 0 is an adjustable parameter called the risk tolerance. Basically, the
risk tolerance measures how much risk the decision maker will tolerate. The larger the
value of R, the less risk averse the decision maker is. That is, a person with a large value
of R is more willing to take risks than a person with a small value of R.

To assess a person’s (or company’s) exponential utility function, we need only assess
the value of R. There are a couple of tips for doing this. First, it has been shown that the
risk tolerance is approximately equal to that dollar amount R such that the decision maker
is indifferent between the following two options:

■ Option 1: Obtain no payoff at all

■ Option 2: Obtain a payoff of R dollars or a loss of R/2 dollars, depending on the
flip of a fair coin

For example, if I am indifferent between a bet where I win $1,000 or lose $500, with
probability 0.5 each, and not betting at all, then my R is approximately $1,000. From this
criterion it certainly makes intuitive sense that a wealthier person (or company) ought to
have a larger value of R. This has been found in practice.

A second tip for finding R is based on empirical evidence found by Ronald Howard, a
prominent decision analyst. Through his consulting experience with several large compa-
nies, he discovered tentative relationships between risk tolerance and several financial
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u(x)

x
–2,000 2,000 4,000 6,0000

1.0

u(–300) = .18
u(–200) = .19

u(0) = .20
u(2,500) = .50

u(–2,000) = 0.9

.8

.7

.6

.5

.4

.3

.2

.1

F I G U R E  3
A Utility Function That

Exhibits Both 
Risk-Seeking and 

Risk-Averse Behavior



variables—net sales, net income, and equity. (See Howard (1992).) Specifically, he found
that R was approximately 6.4% of net sales, 124% of net income, and 15.7% of equity
for the companies he studied. For example, according to this prescription, a company with
net sales of $30 million should have a risk tolerance of approximately $1.92 million.
Howard admits that these percentages are only guidelines. However, they do indicate that
larger and more profitable companies tend to have larger values of R, which means that
they are more willing to take risks involving given dollar amounts.

P R O B L E M S
Group A
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.25
A

L1 �
1
� C and L2

.75
D

.70
A

L3 �
1
� B and L4

.30
D

1 Suppose my utility function for asset position x is given
by u(x) � ln x.

a Am I risk-averse, risk-neutral, or risk-seeking?
b I now have $20,000 and am considering the follow-
ing two lotteries:

L1: With probability 1, I lose $1,000.
L2: With probability .9, I gain $0.
L2: With probability .1, I lose $10,000.

Determine which lottery I prefer and the risk premium of L2.

2 Answer Problem 1 for a utility function u(x) � x2.

3 Answer Problem 1 for a utility function u(x) � 2x 
 1.

4 Show that a decision maker who has a strictly convex
utility function will exhibit risk-seeking behavior.

5 Show that a decision maker who has a linear utility
function will rank two lotteries according to their expected
value.

6 A decision maker has a utility function for monetary
gains x given by u(x) � (x 
 10,000)1/2.

a Show that the person is indifferent between the sta-
tus quo and

L: With probability �
1
3

�, he or she gains $80,000
L: With probability �

2
3

�, he or she loses $10,000
b If there is a 10% chance that a painting valued at
$10,000 will be stolen during the next year, what is the
most (per year) that the decision maker would be willing
to pay for insurance covering the loss of the painting?

7 Patty is trying to determine which of two courses to
take. If she takes the operations research course, she believes
that she has a 10% chance of receiving an A, a 40% chance
for a B, and a 50% chance for a C. If Patty takes a statistics
course, she has a 70% chance for a B, a 25% chance for a
C, and a 5% chance for a D. Patty is indifferent between

She is also indifferent between

If Patty wants to take the course that maximizes the expected
utility of her final grade, which course should she take?

8 We are going to invest $1,000 for a period of 6 months.
Two potential investments are available: T-bills and gold. If
the $1,000 is invested in T-bills, we are certain to end the 
6-month period with $1,296. If we invest in gold, there is a
�
3
4

� chance that we will end the 6-month period with $400 and
a �

1
4

� chance that we will end the 6-month period with $10,000.
If we end up with x dollars, our utility function is given by
u(x) � x1/2. Should we invest in gold or T-bills?

9 We now have $5,000 in assets and are given a choice
between investment 1 and investment 2. With investment 1,
80% of the time we increase our asset position by $295,000,
and 20% of the time we increase our asset position by
$95,000. With investment 2, 50% of the time we increase
our asset position by $595,000, and 50% of the time we
increase our asset position by $5,000. Our utility function
for final asset position x is u(x). We are given the following
values for u(x): u(0) � 0, u(640,000) � .80, u(810,000) �
.90, u(0) � 0, u(90,000) � .30, u(1,000,000) � 1,
u(490,000) � .7.

a Are we risk-averse, risk-seeking, or risk-neutral?
Explain.
b Will we prefer investment 1 or investment 2?

10 My current income is $40,000. I believe that I owe
$8,000 in taxes. For $500, I can hire a CPA to review my
tax return; there is a 20% chance that she will save 
me $4,000 in taxes. My utility function for (disposable
income) � (current income) � (taxes) � (payment to
accountant) is given by �x� where x is disposable income.
Should I hire the CPA?

Group B

11† (The Allais Paradox) Suppose we are offered a
choice between the following two lotteries:

L1: With probability 1, we receive $1 million.
L2: With probability .10, we receive $5 million.
L2: With probability .89, we receive $1 million.
L2: With probability .01, we receive $0.

Which lottery do we prefer? Now consider the following
two lotteries:

†Based on Allais (1953).



L3: With probability .11, we receive $1 million.
L2: With probability .89, we receive $0.
L4: With probability .10, we receive $5 million.
L2: With probability .90, we receive $0.

Which lottery do we prefer? Suppose (like most people), we
prefer L1 to L2. Show that L3 must have a larger expected
utility than L4.

12 (The St. Petersburg Paradox) Let L represent the
following lottery. I toss a coin until it comes up heads. If
the first heads is obtained on the nth toss of the coin, I
receive a payoff of $2n.

a If I were a risk-neutral decision maker, what would
be the certainty equivalent of L? Is this reasonable?
b If a decision maker’s utility function for increasing
wealth by x dollars is given by u(x) � log2(x), what
would be the certainty equivalent of L?

13 Joe is a risk-averse decision maker. Which of the
following lotteries will he prefer?

L1: With probability .10, Joe loses $100.
L2: With probability .90, Joe receives $0.
L2: With probability .10, Joe loses $190.
L2: With probability .90, Joe receives $10.

14† (The Ellsberg Paradox) An urn contains 90 balls. It
is known that 30 are red and that each of the other 60 is
either yellow or black. One ball will be drawn at random
from the urn. Consider the following four options:
Option 1 We receive $1,000 if a red ball is drawn.
Option 2 We receive $1,000 if a yellow ball is drawn.
Option 3 We receive $1,000 if a yellow or black ball is drawn.
Option 4 We receive $1,000 if a red or black ball is drawn.

a Explain why most people prefer option 1 over option
2 and also prefer option 3 over option 4.
b If we prefer option 1 to option 2, explain why we
should also prefer option 4 over option 3.

15 Although the Von Neumann–Morgenstern axioms seem
plausible, there are many reasonable situations in which
people appear to violate these axioms. For example, suppose

1 3 . 3 Flaws in Expected Maximization of Utility: Prospect Theory and Framing Effects 755

a recent college graduate must choose between three job
offers on the basis of starting salary, location of job, and
opportunity for advancement. Given two job offers that are
satisfactory with regard to all three attributes, the graduate
will decide between two job offers by choosing the one that
is superior on at least two of the three attributes. Suppose
he or she has three job offers and has rated each one as
shown in Table 8 (E � excellent, G � good, and S �
satisfactory). Show that the graduate’s preferences among
these jobs violate the Complete Ordering Axiom.

Group C

16 Suppose my utility function for my asset position is
u(x) � x1/2. I have $10,000 at present. Consider the following
lottery:

L: With probability �
1
2

�, L yields a payoff of $1,025.
L: With probability �

1
2

�, L yields a payoff of �$199.
a If I don’t have the right to play L, find an equation
that when solved would yield the amount I would be
willing to pay for the right to play L. This is called the
buying price of lottery L.
b If I have the right to play L, what is the least I would
accept from somebody who wanted to buy the right to
play L? (After someone else buys L, I can’t play L.) This
is called the selling price of lottery L.
c Answer part (b) for the case that I have $1,000.
d Suppose that my utility function for my asset posi-
tion is u(x) � 1 � e�x. Show that for all possible asset
positions, the buying price of L and the selling price of
L will remain the same. Show that for all asset positions,
the buying price of L will equal the selling price of L.†Based on Ellsberg (1961).

13.3 Flaws in Expected Maximization of Utility: 
Prospect Theory and Framing Effects
The axioms underlying expected maximization of utility (EMU) seem reasonable, but in
practice people’s decisions often deviate from the predictions of EMU. Psychologists
Tversky and Kahneman‡ (1981) developed prospect theory and framing effects for val-
ues to try and explain why people deviate from the predictions of EMU.

TA B L E  8

Starting Opportunity for
Salary Location Advancement

Job 1 E S G
Job 2 G E S
Job 3 S G E

‡In 2002, Kahneman received the Nobel Prize for Economics, in large part honoring his work with Tversky.
Tversky was not awarded the prize because he died in 1996 (Nobel Prizes are not given posthumously).



Prospect Theory

Here is one example of a decision that cannot be explained by EMU. Ask a person to
choose between lottery 1 and lottery 2:

Lottery 1: $30 for certain

Lottery 2: 80% chance at $45 and 20% chance at $0

Most people prefer lottery 1 to lottery 2. Next ask the same person to choose between 
lottery 3 and lottery 4:

Lottery 3: 20% chance at $45 and 80% chance at $0

Lottery 4: 25% at $30 and 75% chance at $0

Most people choose lottery 3 over lottery 4. Now let u(0) � 0 and u(45) � 1. A decision
maker following EMU will choose lottery 1 over lottery 2 if and only if u(30) � .8. A
decision maker following EMU will choose lottery 3 over lottery 4 if and only if .2 �
.25u(30) or u(30) 	 .8. This implies that a believer in EMU cannot choose lottery 1 over
lottery 2 and lottery 3 over lottery 4. Thus, for this situation, the choices of most people
contradict EMU. Tversky and Kahneman developed prospect theory to explain the 
decision-making paradox we have just described. Prospect theory assumes that we do not
treat probabilities as they are given in a decision-making problem. Instead, the decision
maker treats a probability p for an event as a “distorted” probability �( p). A �( p) func-
tion that seems to explain many paradoxes is shown in Figure 4.

The shape of the �( p) function in the figure implies that individuals are more sensitive
to changes in probability when the probability of an event is small (near 0) or large (near 1).
The equation we used to construct our �( p) curve is �( p) � 1.89799p �3.55995p2 

2.662549p3. How does prospect theory explain our paradox? From the values of �( p) given
in Figure 5, we can compare the expected “prospects” of lottery 1 versus lottery 2 and lot-
tery 3 versus lottery 4.

Prospect for lottery 1: u(30)

Prospect for lottery 2: .602

Prospect for lottery 3: .258

Prospect for lottery 4: .293u(30).

Thus, lottery 1 is preferred to lottery 2 if u(30) � .602, while lottery 3 is preferred to lot-
tery 4 if .258 � .293u(30) or u(30) 	 .258/.293 � .88. Our paradox evaporates, because
for many people, u(30) will be between .602 and .88!
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Framing

The idea of framing is based on the fact that people often set their utility function from
the standpoint of a frame or status quo from which they view the current situation. Most
people’s utility functions treat a loss of a given value as being more serious than a gain
of an identical value. This is reflected in the utility function shown in Figure 6, which is
convex for losses and concave for gains.

To see how framing can explain the failure of EMU, consider the following problem
that Tversky and Kahneman gave to a group of students. The US is preparing for the out-
break of a disease that is expected to kill 600 people. Two alternative programs have been
proposed:

Program I: I200 people are saved.

Program II: With probability �
1
3

�, 600 people are saved.

Most students preferred program I, probably because with program II there is a large risk
of saving nobody. Since the programs are phrased in terms of lives saved, most people
take the frame or reference point for this problem to be no lives saved or 600 people dead.
Since the effect of each program is expressed in gains, and the utility function is concave
for gains, we find that u(200) � u((�

2
3

�) 0 
 (�
1
3

�)600)) � (�
1
3

�)u(600) 
 (�
2
3

�)u(0) � (�
1
3

�)u(600).
This implies, of course, that the person chooses program I over program II.
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13.4 Decision Trees
Often, people must make a series of decisions at different points in time. Then decision
trees can be used to determine optimal decisions. A decision tree enables a decision maker
to decompose a large complex decision problem into several smaller problems.

E X A M P L E  3

Colaco currently has assets of $150,000 and wants to decide whether to market a new
chocolate-flavored soda, Chocola. Colaco has three alternatives:

Colaco Marketing

Next, Tversky and Kahneman rephrased the problem as follows:

Program I: I400 people die.

Program II: With probability �
2
3

�, 600 people die.

Now most people choose program II. Note that both program I’s are identical, as are both
program II’s. Why do most people choose program II for the second phrasing of the al-
ternatives? The second phrasing shifts most people’s reference points from “No lives
saved” (in first phrasing) to “Nobody dies.” The outcomes are expressed as losses (deaths),
so the convexity of the utility curve for losses implies that

(�
2
3

�)u(�600) � (�
2
3

�)u(�600) 
 (�
1
3

�)u(0) � u((�
2
3

�)(�600) 
 �
1
3

�(0)) � u(�400)

This implies, of course, that the person chooses program II over program I.

P R O B L E M S
Group A
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1 Explain how prospect theory and/or framing explains
the Allais Paradox. (See Problem 11 of Section 13.2.)

2 Suppose a decision maker has a utility function u(x) � x1/3.
We flip a fair coin and receive $10 for heads and $0 for tails.

a Using expected utility theory, determine the cer-
tainty equivalent of this lottery.
b Using �( p) � 1.89799p � 3.55995p2 

2.662549p3, use prospect theory to determine the cer-
tainty equivalent of the lottery.
c Intuively explain why your answer in part (b) is
smaller than your answer in part (a).
d What implications does this problem have for the
method used in Section 13.2 to estimate a person’s util-
ity function?

3 You are given a choice between lottery 1 and lottery 2.
You are also given a choice between lottery 3 and lottery 4.

Lottery 1: A sure gain of $240
Lottery 2: 25% chance to gain $1,000 and 75%

chance to gain nothing
Lottery 3: A sure loss of $750
Lottery 4: A 75% chance to lose $1,000 and a

25% chance of losing nothing
84% of all people prefer lottery 1 over lottery 2, and 87%
choose lottery 4 over lottery 3.

a Explain why the choice of lottery 1 over lottery 2 and
lottery 4 over lottery 3 contradicts expected utility max-
imization. (Hint: Compare lottery 1 
 lottery 4 to lottery
2 
 lottery 3.)
b Can you explain this anomalous behavior?

4 Tversky and Kahneman asked 72 respondents to choose
between lottery 1 and lottery 2 and lottery 3 and lottery 4.

Lottery 1: A .001 chance at winning $5,000 and a
.999 chance of winning $0

Lottery 2: A sure gain of $5
Lottery 3: A .001 chance of losing $5,000 and a 

.999 chance of losing $0
Lottery 4: A sure loss of $5

More than 75% of all participants preferred lottery 1 to
lottery 2 and lottery 4 to lottery 3.

a Which choices would be made by a risk-averse deci-
sion maker?
b Which choices would be made by a risk-seeking de-
cision maker?
c How does the observed behavior of the participants
contradict expected utility maximization?
d How does prospect theory resolve the contradiction?
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Alternative 1 Test market Chocola locally, then utilize the results of the market study to
determine whether or not to market Chocola nationally.

Alternative 2 Immediately (without test marketing) market Chocola nationally.

Alternative 3 Immediately (without test marketing) decide not to market Chocola nation-
ally.

In the absence of a market study, Colaco believes that Chocola has a 55% chance of be-
ing a national success and a 45% chance of being a national failure. If Chocola is a na-
tional success, Colaco’s asset position will increase by $300,000, and if Chocola is a na-
tional failure, Colaco’s asset position will decrease by $100,000.

If Colaco performs a market study (at a cost of $30,000), there is a 60% chance that
the study will yield favorable results (referred to as a local success) and a 40% chance
that the study will yield unfavorable results (referred to as a local failure). If a local suc-
cess is observed, there is an 85% chance that Chocola will be a national success. If a lo-
cal failure is observed, there is only a 10% chance that Chocola will be a national suc-
cess. If Colaco is risk-neutral (wants to maximize its expected final asset position), what
strategy should the company follow?

Solution To draw a decision tree that represents Colaco’s problem, we begin at the present and pro-
ceed toward future events and decisions. The decision tree in Figure 7 is constructed with
two kinds of forks: decision forks (denoted by �) and event forks (denoted by �).

A decision fork represents a point in time when Colaco has to make a decision. Each
branch emanating from a decision fork represents a possible decision. An example of a
decision fork occurs when Colaco must determine whether or not to test market Chocola.

Test market Chocola

�
Don’t test market Chocola

.60
Local success

� .40
Local failure

An event fork is drawn when outside forces determine which of several random events
will occur. Each branch of an event fork represents a possible outcome, and the number
on each branch represents the probability that the event will occur. For example, if Co-
laco decides to test market Chocola, the company faces the following event fork when
observing the results of the test market study:

A branch of a decision tree is a terminal branch if no forks emanate from the branch. Thus,
the branches indicating National success and National failure are terminal branches of Co-
laco’s decision tree. Since we are maximizing expected final asset position at each terminal
branch, we must enter the final asset position that will result if the path leading to the given
terminal branch occurs. For example, the terminal branch National failure that follows 
Local failure leads to a final asset position of 150,000 � 30,000 � 100,000 � $20,000. If
we were maximizing expected revenues, we would enter revenues on each terminal branch.

To determine the decisions that will maximize Colaco’s expected final asset position,
we work backward (sometimes called “folding back the tree”) from right to left.† At each

†See Chapters 17 and 18 for an explanation of working backward (often called dynamic programming).



event fork, we calculate the expected final asset position and enter it in �. At each deci-
sion fork, we denote by � the decision that maximizes the expected final asset position and
enter the expected final asset position associated with that decision in �. We continue
working backward in this fashion until we reach the beginning of the tree. Then the opti-
mal sequence of decisions can be obtained by following the �.

We begin by determining the expected final asset positions for the following three
event forks:

1 Market nationally after Local success. Here we have an expected final asset position
of .85(420,000) 
 .15(20,000) � $360,000.

2 Market nationally after Local failure. Here we have an expected final asset position of
.10(420,000) 
 .90(20,000) � $60,000.

3 Market nationally after Don’t test market. Here we have an expected final asset posi-
tion of .55(450,000) 
 .45(50,000) � $270,000.

We may now evaluate three decision forks:

1 Decision after Local success. Market nationally yields a larger expected final asset po-
sition than Don’t market nationally, so we � Market nationally and enter an expected final
asset position of $360,000.

2 Decision after Local failure. Don’t market nationally yields a larger expected final as-
set position than Market nationally, so we � Don’t market nationally and enter an expected
final asset position of $120,000.

3 Decision for Don’t test market. Market nationally yields a larger expected final asset
position than Don’t market nationally, so we � Market nationally and enter an expected fi-
nal asset position of $270,000.
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Don't market nationally

Market nationally

Market nationally

.55
National success

.10
National success

.15
National failure

.90
National failure

.45
National failure

.85
National success

Market nationally

Don't market
nationally

Don't market
nationally

$360,000

$360,000

$120,000

$60,000

$270,000

$150,000

$264,000

$270,000

$270,000

Test market

Don't test market

.60
Local success

.40
Local failure

$150,000 – $30,000 = $120,000

$150,000 – $30,000 = $120,000

$150,000 + $300,000 = $450,000

$150,000 – $100,000 = $50,000

$150,000 – $30,000 + $300,000 = $420,000

$150,000 – $30,000 – $100,000 = $20,000

$150,000 – $30,000 + $300,000 = $420,000

$150,000 – $30,000 – $100,000 = $20,000

F I G U R E  7
Colaco’s Decision Tree (Risk-Neutral)



We now must evaluate the event fork emanating from the Test market decision. This
event fork yields an expected final asset position of .60(360,000) 
 .40(120,000) �
$264,000, which is entered in �.

All that remains is to determine the correct decision at the decision fork Test market
versus Don’t test market. We have found that Test market yields an expected final asset
position of $264,000, and Don’t test market yields an expected final asset position of
$270,000. Thus, we � Don’t test market and enter $270,000 in �.

We have now reached the beginning of the tree and have found that Colaco’s optimal
decision is Don’t test market and then Market nationally. This strategy will yield an ex-
pected final asset position of $270,000. Observe that the decision tree also tells us that if
we had test marketed and then acted optimally (Market nationally after Local success and
Don’t market nationally after Local failure), we would have obtained an expected final as-
set position of $264,000.

Incorporating Risk Aversion into Decision Tree Analysis

Note that Colaco’s optimal strategy yields a .45 chance that the company will end up with
a relatively small final asset position of $50,000. On the other hand, the strategy of test
marketing and acting optimally on the results of the test market study yields only a
(.60)(.15) � .09 chance that Colaco’s asset position will be below $100,000. (Why?) Thus,
if Colaco is a risk-averse decision maker, the strategy of immediately marketing nation-
ally may not reflect the company’s preference.

To illustrate how risk aversion may be incorporated into decision tree analysis, sup-
pose that Colaco has the risk-averse utility function u(x) in Figure 8 (x � final asset po-
sition). (How do we know that this utility function exhibits risk aversion?) To determine
Colaco’s optimal decisions (that is, the decisions that maximize expected utility), simply
replace each final asset position x0 with its utility u(x0). Then at each event fork, compute
the expected utility of Colaco’s final asset position, and at each decision fork, choose the
branch having the largest expected utility.
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u(x)

x (thousands of $)
100 200 300 400

(226, .665)

500

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0
F I G U R E  8

Colaco’s Utility Function



We find from Figure 8 that u($450,000) � 1, u($420,000) � .99, u($150,000) � .48,
u($120,000) � .40, u($50,000) � .19, and u($20,000) � 0. Substituting these values into
the decision tree of Figure 7 yields the decision tree in Figure 9. We compute the expected
utility at the following three event forks:

1 Market nationally after Local success. Here we have an expected utility of .85(.99) 

.15(0) � .8415.

2 Market nationally after Local failure. Here we have an expected utility of .10(.99) 

.90(0) � .099.

3 Market nationally after Don’t test market. Here we have an expected utility of .55(1) 

.45(.19) � .6355.

We may now evaluate three decision forks:

1 Decision after Local success. Market nationally yields a larger expected utility than
Don’t market nationally, so for this fork we � Market nationally and enter an expected util-
ity of .8415.

2 Decision after Local failure. Don’t market nationally yields a larger expected utility
than Market nationally, so for this fork we � Don’t market nationally and enter an expected
utility of .40.

3 Decision for Don’t test market. Market nationally yields a larger expected utility than
Don’t market nationally, so for this fork we � Market nationally and enter an expected util-
ity of .6355.

We now must evaluate the event fork emanating from the Test market decision. This
event fork yields an expected utility of .60(.8415) 
 .40(.40) � .6649, which is entered
in �. All that remains is to determine the correct decision at the decision fork Test mar-
ket versus Don’t test market. We know that Test market yields an expected utility of .6649,
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Don't market nationally

Market nationally

Market nationally

.55
National success

.10
National success

.15
National failure

.90
National failure

.45
National failure

.85
National success

Market nationally

Don't market
nationally

Don't market nationally

.8415

.8415

.40

.099

.6355

.6649

.6649

.6355

Test market

Don't test market

.60
Local success

.40
Local failure

u($120,000)  = .40

u($420,000)  = .99

u($20,000)  =  0

u($420,000)  = .99

u($20,000)  =  0

u($50,000)  =  .19

u($450,000)  =  1

u($120,000)  = .40

u($150,000)  =  .48

u($226,000)  =  .6649, so this situation is
equivalent to a certain asset position of $226,000.

F I G U R E  9
Colaco’s Decision Tree

(Risk-Averse)



and Don’t test market yields an expected utility of .6355, so we � Test market and enter
an expected utility of .6649 in �.

We have now reached the beginning of the tree and have found that Colaco’s optimal
decision is to begin by test marketing. If a local success is observed, then Colaco should
market Chocola nationally; if a local failure is observed, then Colaco should not market
Chocola nationally. This optimal strategy yields only a .60(.15) � .09 chance that Colaco
will have a final asset position of less than $100,000. This reflects the risk-averse nature
of the utility function in Figure 8. Also, we see from Figure 8 that u($226,000) � .665.
Since Colaco views the current situation as having an expected utility of .6649, this means
that the company considers the current situation equivalent to a certain asset position of
$226,000. Thus, if somebody offered to pay more than 226,000 � 150,000 � $76,000 to
buy the rights to Chocola, Colaco should take the offer. This is because receiving more
than $76,000 for the rights to Chocola would bring Colaco’s asset position to more than
150,000 
 76,000 � $226,000, and this situation has a higher expected utility than .665.

Expected Value of Sample Information

Decision trees can be used to measure the value of sample or test market information. To
illustrate how this is done, we again assume that Colaco is risk-neutral. What is the value
of the information that would be obtained by test marketing Chocola?

We begin by determining Colaco’s expected final asset position if the company acts op-
timally and the test market study is costless. We call this expected final asset position Co-
laco’s expected value with sample information (EVWSI). From Figure 7, we see that if
we Test market and then act optimally, we will now have an expected final asset position
of 264,000 
 30,000 � $294,000. Since $294,000 is larger than the expected asset posi-
tion of the Don’t test market branch ($270,000), we find that EVWSI � $294,000.

We next determine the largest expected final asset position that Colaco would obtain
if the test market study were not available. We call this the expected value with original
information (EVWOI). From the Don’t test market branch of Figure 7, we find EVWOI �
$270,000. Now the expected value of the test market information, referred to as expected
value of sample information (EVSI), is defined to be EVSI � EVWSI � EVWOI.

In the Colaco example, EVSI is the most that Colaco can pay for the test market in-
formation and still be at least as well off as without the test market information. Thus, for
the Colaco example, EVSI � 294,000 � 270,000 � $24,000. Since the cost of the test
market study ($30,000) exceeds EVSI, Colaco should not (as we already know) conduct
the test market study.

Expected Value of Perfect Information

We can modify the analysis used to determine EVSI to find the value of perfect infor-
mation. By perfect information we mean that all uncertain events that can affect Colaco’s
final asset position still occur with the given probabilities (so there is still a .55 chance of
Chocola being a national success and a .45 chance that Chocola will be a national fail-
ure), but Colaco finds out whether Chocola is a national success or a national failure be-
fore making the decision to market Chocola nationally or not. This information can then
be used to determine Colaco’s optimal marketing strategy. Thus, expected value with
perfect information (EVWPI) is found by drawing a decision tree in which the decision
maker has perfect information about which state has occurred before making a decision.
Then the expected value of perfect information (EVPI) is given by EVPI � EVWPI �
EVWOI.
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P R O B L E M S
Group A

For the Colaco example, we find from Figure 10 that EVWPI � $315,000. Then EVPI �
315,000 � 270,000 � $45,000. Thus, a perfect (one that was always correct) test marketing
study would be worth $45,000. EVPI is a useful upper bound on the value of sample or test
market information; that is, no sample or test market information (no matter how good) can
be worth more than $45,000.

E X A M P L E  4

An art dealer’s client is willing to buy the painting Sunplant at $50,000. The dealer can
buy the painting today for $40,000 or can wait a day and buy the painting tomorrow (if
it has not been sold) for $30,000. The dealer may also wait another day and buy the paint-
ing (if it is still available) for $26,000. At the end of the third day, the painting will no
longer be available for sale. Each day, there is a .60 probability that the painting will be
sold. What strategy maximizes the dealer’s expected profit?

Solution The decision tree for this example is given in Figure 11. The key to drawing this decision
tree is that each day, the dealer must choose between buying the painting and waiting an-
other day. Of course, waiting might mean that the dealer may never be able to buy the paint-
ing. As we see from the decision tree, the dealer should buy the painting on the first day.

Art Dealer
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Don't
market nationally

Don't
market nationally

Market nationally

Market nationally

.55
National success

.45
National failure

$450,000

$150,000 + $300,000 = $450,000

$150,000

$150,000

EVWPI = $315,000
$150,000 – $100,000 = $50,000

$150,000

F I G U R E  10
Expected Value with
Perfect Information
(EVWPI) for Colaco

$10,000

$0 $0

$0$10,000

$8,000

$20,000 $24,000

$9,600

Buy Buy

.40 Available
.40 Available

Buy

Don't buy
.60 Sold

.60 Sold

Don't buy
Don't buy

$20,000 $24,000

F I G U R E  11
Decision Tree for

Example 4

1 Oilco must determine whether or not to drill for oil in
the South China Sea. It costs $100,000, and if oil is found,
the value is estimated to be $600,000. At present, Oilco
believes there is a 45% chance that the field contains oil.
Before drilling, Oilco can hire (for $10,000) a geologist to
obtain more information about the likelihood that the field
will contain oil. There is a 50% chance that the geologist
will issue a favorable report and a 50% chance of an
unfavorable report. Given a favorable report, there is an

80% chance that the field contains oil. Given an unfavorable
report, there is a 10% chance that the field contains oil.
Determine Oilco’s optimal course of action. Also determine
EVSI and EVPI.

2 The decision sciences department is trying to determine
which of two copying machines to purchase. Both machines
will satisfy the department’s needs for the next ten years.
Machine 1 costs $2,000 and has a maintenance agreement,
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Game Theory

In previous chapters, we have encountered many situations in which a single decision maker
chooses an optimal decision without reference to the effect that the decision has on other deci-
sion makers (and without reference to the effect that the decisions of others have on him or her).
In many business situations, however, two or more decision makers simultaneously choose an ac-
tion, and the action chosen by each player affects the rewards earned by the other players. For ex-
ample, each fast-food company must determine an advertising and pricing policy for its product,
and each company’s decision will affect the revenues and profits of other fast-food companies.

Game theory is useful for making decisions in cases where two or more decision makers
have conflicting interests. Most of our study of game theory deals with situations where there
are only two decision makers (or players), but we briefly study n-person (where n � 2) game
theory also. We begin our study of game theory with a discussion of two-player games in which
the players have no common interest.

14.1 Two-Person Zero-Sum and Constant-Sum Games: Saddle Points
Characteristics of Two-Person Zero-Sum Games

1 There are two players (called the row player and the column player).

2 The row player must choose 1 of m strategies. Simultaneously, the column player must
choose 1 of n strategies.

3 If the row player chooses his ith strategy and the column player chooses his jth strat-
egy, then the row player receives a reward of aij and the column player loses an amount
aij. Thus, we may think of the row player’s reward of aij as coming from the column player.

Such a game is called a two-person zero-sum game, which is represented by the ma-
trix in Table 1 (the game’s reward matrix). As previously stated, aij is the row player’s

TA B L E  1
Example of Two-Person Zero-Sum Game

Row Player’s Column Player’s Strategy

Strategy Column 1 Column 2 ��� Column n

Row 1 a11 a12 ��� a1n

Row 2 a21 a22 ��� a2n

� � � �

Row m am1 am2 ��� amn
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reward (and the column player’s loss) if the row player chooses his ith strategy and the
column player chooses his jth column strategy.

For example, in the two-person zero-sum game in Table 2, the row player would re-
ceive two units (and the column player would lose two units) if the row player chose his
second strategy and the column player chose his first strategy.

A two-person zero-sum game has the property that for any choice of strategies, the sum
of the rewards to the players is zero. In a zero-sum game, every dollar that one player
wins comes out of the other player’s pocket, so the two players have totally conflicting in-
terests. Thus, cooperation between the two players would not occur.

John von Neumann and Oskar Morgenstern developed a theory of how two-person
zero-sum games should be played, based on the following assumption.

Basic Assumption of Two-Person Zero-Sum Game Theory

Each player chooses a strategy that enables him to do the best he can, given that his op-
ponent knows the strategy he is following. Let’s use this assumption to determine how the
row and column players should play the two-person zero-sum game in Table 3.

How should the row player play this game? If he chooses row 1, then the assumption im-
plies that the column player will choose column 1 or column 2 and hold the row player to
a reward of four units (the smallest number in row 1 of the game matrix). Similarly, if the
row player chooses row 2, then the assumption implies that the column player will choose
column 3 and hold the row player’s reward to one unit (the smallest or minimum number in
the second row of the game matrix). If the row player chooses row 3, then he will be held
to the smallest number in the third row (5). Thus, the assumption implies that the row player
should choose the row having the largest minimum. Because max (4, 1, 5) � 5, the row
player should choose row 3. By choosing row 3, the row player can ensure that he will win
at least max (row minimum) � five units.

From the column player’s viewpoint, if he chooses column 1, then the row player will
choose the strategy that makes the column player’s losses as large as possible (and the row
player’s winnings as large as possible). Thus, if the column player chooses column 1, then
the row player will choose row 3 (because the largest number in the first column is the 6
in the third row). Similarly, if the column player chooses column 2, then the row player
will again choose row 3, because 5 � max (4, 3, 5). Finally, if the column player chooses
column 3, the row player will choose row 1, causing the column player to lose 10 � max

TA B L E  3
A Game with a Saddle Point

Row Player’s
Column Player’s Strategy

Row
Strategy Column 1 Column 2 Column 3 Minimum

Row 1 4 4 10 4
Row 2 2 3 1 1
Row 3 6 5 7 5
Column 6 5 10
Maximum

TA B L E  2
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(10, 1, 7) units. Thus, the column player can hold his losses to min (column maximum) �
min (6, 5, 10) � 5 by choosing column 2.

We have shown that the row player can ensure that he will win at least five units and
the column player can hold the row player’s winnings to at most five units. Thus, the only
rational outcome of this game is for the row player to win exactly five units; the row player
cannot expect to win more than five units, because the column player (by choosing col-
umn 2) can hold the row player’s winnings to five units.

The game matrix we have just analyzed has the property of satisfying the saddle point
condition:

max (row minimum) � min (column maximum) (1)
all all

rows columns

Any two-person zero-sum game satisfying (1) is said to have a saddle point. If a two-
person zero-sum game has a saddle point, then the row player should choose any strategy
(row) attaining the maximum on the left side of (1). The column player should choose any
strategy (column) attaining the minimum on the right side of (1). Thus, for the game we
have just analyzed, a saddle point occurred where the row player chose row 3 and the col-
umn player chose column 2. The row player could make sure of receiving a reward of at
least five units (by choosing the optimal strategy of row 3), and the column player could
ensure that the row player would receive a reward of at most five units (by choosing the
optimal strategy of column 2). If a game has a saddle point, then we call the common
value of both sides of (1) the value (v) of the game to the row player. Thus, this game has
a value of 5.

An easy way to spot a saddle point is to observe that the reward for a saddle point must
be the smallest number in its row and the largest number in its column (see Problem 4 at
the end of this section). Thus, like the center point of a horse’s saddle, a saddle point for
a two-person zero-sum game is a local minimum in one direction (looking across the row)
and a local maximum in another direction (looking up and down the column).

A saddle point can also be thought of as an equilibrium point in that neither player
can benefit from a unilateral change in strategy. For example, if the row player were to
change from the optimal strategy of row 3 (to either row 1 or row 2), his reward would
decrease, while if the column player changed from his optimal strategy of column 2 (to
either column 1 or column 3), the row player’s reward (and the column player’s losses)
would increase. Thus, a saddle point is stable in that neither player has an incentive to
move away from it.

Many two-person zero-sum games do not have saddle points. For example, the game
in Table 4 does not have a saddle point, because

max (row minimum) � �1 � min (column maximum) � �1

In Sections 14.2 and 14.3, we explain how to find the value and the optimal strategies
for two-person zero-sum games that do not have saddle points.

TA B L E  4
A Game with No Saddle Point

Row Player’s
Column Player’s Strategy

Strategy Column 1 Column 2 Row Minimum

Row 1 �1 �1 �1
Row 2 �1 �1 �1
Column �1 �1
Maximum
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Two-Person Constant-Sum Games

Even if a two-person game is not zero-sum, two players can still be in total conflict.
To illustrate this, we now consider two-person constant-sum games.

D E F I N I T I O N ■ A two-person constant-sum game is a two-player game in which, for any choice
of both player’s strategies, the row player’s reward and the column player’s reward
add up to a constant value c. ■

Of course, a two-person zero-sum game is just a two-person constant-sum game with
c � 0. A two-person constant-sum game maintains the feature that the row and column
players are in total conflict, because a unit increase in the row player’s reward will always
result in a unit decrease in the column player’s reward. In general, the optimal strategies
and value for a two-person constant-sum game may be found by the same methods used
to find the optimal strategies and value for a two-person zero-sum game.

During the 8 to 9 P.M. time slot, two networks are vying for an audience of 100 million
viewers. The networks must simultaneously announce the type of show they will air in
that time slot. The possible choices for each network and the number of network 1 view-
ers (in millions) for each choice are shown in Table 5. For example, if both networks
choose a western, the matrix indicates that 35 million people will watch network 1 and
100 � 35 � 65 million people will watch network 2. Thus, we have a two-person 
constant-sum game with c � 100 (million). Does this game have a saddle point? What is
the value of the game to network 1?

Solution Looking at the row minima, we find that by choosing a soap opera, network 1 can be sure
of at least max (15, 45, 14) � 45 million viewers. Looking at the column maxima, we
find that by choosing a western, network 2 can hold network 1 to at most min (45, 58,
70) � 45 million viewers. Because

max (row minimum) � min (column maximum) � 45

we find that Equation (1) is satisfied. Thus, network 1’s choosing a soap opera and net-
work 2’s choosing a western yield a saddle point; neither side will do better if it unilat-
erally changes strategy (check this). Thus, the value of the game to network 1 is 45 mil-
lion viewers, and the value of the game to network 2 is 100 � 45 � 55 million viewers.
The optimal strategy for network 1 is to choose a soap opera, and the optimal strategy for
network 2 is to choose a western.

Constant Sum TV GameE X A M P L E  1

TA B L E  5
A Constant-Sum Game

Network 2
Row

Network 1 Western Soap Opera Comedy Minimum

Western 35 15 60 15
Soap Opera 45 58 50 45
Comedy 38 14 70 14
Column 45 58 70
Maximum



1 4 . 2 Two-Person Zero-Sum Games: Randomized Strategies, Domination, and Graphical Solution 807

P R O B L E M S
Group A

1 Find the value and optimal strategy for the game in
Table 6.

2 Find the value and the optimal strategies for the two-
person zero-sum game in Table 7.

Group B

3 Mad Max wants to travel from New York to Dallas by
the shortest possible route. He may travel over the routes
shown in Table 8. Unfortunately, the Wicked Witch can
block one road leading out of Atlanta and one road leading
out of Nashville. Mad Max will not know which roads have
been blocked until he arrives at Atlanta or Nashville. Should
Mad Max start toward Atlanta or Nashville? Which routes
should the Wicked Witch block?

Group C

4 Explain why the reward for a saddle point must be the
smallest number in its row and the largest number in its
column. Suppose a reward is the smallest in its row and the
largest in its column. Must that reward yield a saddle point?
(Hint: Think about the idea of weak duality discussed in
Chapter 6.)

14.2 Two-Person Zero-Sum Games: Randomized Strategies, 
Domination, and Graphical Solution
In the previous section, we found that not all two-person zero-sum games have saddle
points. We now discuss how to find the value and optimal strategies for a two-person zero-
sum game that does not have a saddle point. We begin with the simple game of Odds and
Evens.

Two players (called Odd and Even) simultaneously choose the number of fingers (1 or 2)
to put out. If the sum of the fingers put out by both players is odd, then Odd wins $1 from
Even. If the sum of the fingers is even, then Even wins $1 from Odd. We consider the
row player to be Odd and the column player to be Even. Determine whether this game
has a saddle point.

Solution This is a zero-sum game, with the reward matrix shown in Table 9. Because max (row
minimum) � �1 and min (column maximum) � �1, Equation (1) is not satisfied, and
this game has no saddle point. All we know is that Odd can be sure of a reward of at least

TA B L E  6

TA B L E  7

TA B L E  8

Length of Route
Route (Miles)

New York–Atlanta 800
New York–Nashville 900
Nashville–St. Louis 400
Nashville–New Orleans 200
Atlanta–St. Louis 300
Atlanta–New Orleans 600
St. Louis–Dallas 500
New Orleans–Dallas 300

Odds and EvensE X A M P L E  2
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�1, and Even can hold Odd to a reward of at most �1. Thus, it is unclear how to deter-
mine the value of the game and the optimal strategies. Observe that for any choice of strate-
gies by both players, there is a player who can benefit by unilaterally changing her 
strategy. For example, if both players put out one finger, then Odd could have increased
her reward from �1 to �1 by putting out two fingers. Thus, no choice of strategies by the
player is stable. We now determine optimal strategies and the value for this game.

Randomized or Mixed Strategies

To progress further with the analysis of Example 2 (and other games without saddle
points), we must expand the set of allowable strategies for each player to include ran-
domized strategies. Until now, we have assumed that each time a player plays a game,
the player will choose the same strategy. Why not allow each player to select a probabil-
ity of playing each strategy? For Example 2, we might define

x1 � probability that Odd puts out one finger

x2 � probability that Odd puts out two fingers

y1 � probability that Even puts out one finger

y2 � probability that Even puts out two fingers

If x1 � 0, x2 � 0, and x1 � x2 � 1, then (x1, x2) is a randomized, or mixed, strategy for
Odd. For example, the mixed strategy (	

1
2

	, 	
1
2

	) could be realized by Odd if she tossed a coin
before each play of the game and put out one finger for heads and two fingers for tails.
Similarly, if y1 � 0, y2 � 0, and y1 � y2 � 1, then ( y1, y2) is a mixed strategy for Even.

Any mixed strategy (x1, x2, . . . , xm) for the row player is a pure strategy if any of the
xi equals 1. Similarly, any mixed strategy ( y1, y2, . . . , yn) for the column player is a pure
strategy if any of the yi equals 1. A pure strategy is a special case of a mixed strategy in
which a player always chooses the same action. Recall from Section 14.1 that the game
in Table 10 had a value of 5 (corresponding to a saddle point), so the row player’s opti-
mal strategy could be represented as the pure strategy (0, 0, 1), and the column player’s
optimal strategy could be represented as the pure strategy (0, 1, 0).

We continue to assume that both players will play two-person zero-sum games in ac-
cordance with the basic assumption of Section 14.1. In the context of randomized strate-

TA B L E  9
Reward Matrix for Odds and Evens

Row Player
Column Player (Even)

(Odd) 1 Finger 2 Fingers Row Minimum

1 Finger �1 �1 �1
2 Fingers �1 �1 �1
Column �1 �1
Maximum

TA B L E  10
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gies, the assumption (from the standpoint of Odd) may be stated as follows: Odd should
choose x1 and x2 to maximize her expected reward under the assumption that Even knows
the value of x1 and x2.

It is important to realize that even though we assume that Even knows the values of x1

and x2, on a particular play of the game, she is not assumed to know Odd’s actual strategy
choice until the instant the game is played.

Graphical Solution of Odds and Evens

Finding Odd’s Optimal Strategy

With this version of the basic assumption, we can determine the optimal strategy for Odd.
Because x1 � x2 � 1, we know that x2 � 1 � x1. Thus, any mixed strategy may be writ-
ten as (x1, 1 � x1), and it suffices to determine the value of x1. Suppose Odd chooses a
particular mixed strategy (x1, 1 � x1). What is Odd’s expected reward against each of
Even’s strategies? If Even puts out one finger, then Odd will receive a reward of �1 with
probability x1 and a reward of �1 with probability x2 � 1 � x1. Thus, if Even puts out one
finger and Odd chooses the mixed strategy (x1, 1 � x1), then Odd’s expected reward is

(�1)x1 � (�1)(1 � x1) � 1 � 2x1

As a function of x1, this expected reward is drawn as line segment AC in Figure 1. Simi-
larly, if Even puts out two fingers and Odd chooses the mixed strategy (x1, 1 � x1), Odd’s
expected reward is

(�1)(x1) � (�1)(1 � x1) � 2x1 � 1

which is line segment DE in Figure 1.
Suppose Odd chooses the mixed strategy (x1, 1 � x1). Because Even is assumed to

know the value of x1, for any value of x1 Even will choose the strategy (putting out one
or two fingers) that yields a smaller expected reward for Odd. From Figure 1, we see that,
as a function of x1, Odd’s expected reward will be given by the y-coordinate in DBC. Odd
wants to maximize her expected reward, so she should choose the value of x1 corre-
sponding to point B. Point B occurs where the line segments AC and DE intersect, or

1

Expected reward
to Odd

Even picks 1

Even picks 2

(0, 1) A

(0, –1) D

E (1, 1)

AC = Odd,s reward with x1
         if Even picks 1
DE = Odd,s reward with x1
         if Even picks 2

C (1, –1)

B
x1

F I G U R E  1
Choosing Odd’s

Strategy
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where 1 � 2x1 � 2x1 � 1. Solving this equation, we obtain x1 � 	
1
2

	. Thus, Odd should
choose the mixed strategy (	

1
2

	, 	
1
2

	). The reader should verify that against each of Even’s
strategies, (	

1
2

	, 	
1
2

	) yields an expected reward of zero. Thus, zero is a floor on Odd’s ex-
pected reward, because by choosing the mixed strategy (	

1
2

	, 	
1
2

	), Odd can be sure that (for
any choice of Even’s strategy) her expected reward will always be at least zero.

Finding Even’s Optimal Strategy

We now consider how Even should choose a mixed strategy ( y1, y2). Again, because 
y2 � 1 � y1, we may ask how Even should choose a mixed strategy ( y1, 1 � y1). The ba-
sic assumption implies that Even should choose y1 to minimize her expected losses (or,
equivalently, minimize Odd’s expected reward) under the assumption that Odd knows the
value of y1. Suppose Even chooses the mixed strategy ( y1, 1 � y1). What will Odd do?
If Odd puts out one finger, then her expected reward is

(�1)y1 � (�1)(1 � y1) � 1 � 2y1

which is line segment AC in Figure 2. If Odd puts out two fingers, then her expected re-
ward is

(�1)( y1) � (�1)(1 � y1) � 2y1 � 1

which is line segment DE in Figure 2. Because Odd is assumed to know the value of y1,
she will put out the number of fingers corresponding to max (1 � 2y1, 2y1 � 1). Thus,
for a given value of y1, Odd’s expected reward (and Even’s expected loss) will be given
by the y-coordinate on the piecewise linear curve ABE.

Now Even chooses the mixed strategy ( y1, 1 � y1) that will make Odd’s expected re-
ward as small as possible. Thus, Even should choose the value of y1 corresponding to the
lowest point on ABE (point B). Point B is where the line segments AC and DE intersect,
or where 1 � 2y1 � 2y1 � 1, or y1 � 	

1
2

	. The basic assumption implies that Even should
choose the mixed strategy (	

1
2

	, 	
1
2

	). For this mixed strategy, Even’s expected loss (and 
Odd’s expected reward) is zero. We say that zero is a ceiling on Even’s expected loss 

Expected reward
to Odd

Odd picks 1

Odd picks 2

AC = Odd,s reward against y1
         if Odd picks 1
DE = Odd,s reward against y1
         if Odd picks 2

y1

.75

.50

.25

0

–.25

–.50

–.75

–.1.0 D C

A E

B

1.0

F I G U R E  2
Choosing Even’s

Strategy
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(or Odd’s expected reward), because by choosing the mixed strategy (	
1
2

	, 	
1
2

	), Even can 
ensure that her expected loss (for any choice of strategies by Odd) will not exceed zero.

More on the Idea of Value and Optimal Strategies

For the game of Odds and Evens, the row player’s floor and the column player’s ceiling
are equal. This is not a coincidence. When each player is allowed to choose mixed strate-
gies, the row player’s floor will always equal the column player’s ceiling. In Section 14.3,
we use the Dual Theorem of Chapter 6 to prove this interesting result. We call the com-
mon value of the floor and ceiling the value of the game to the row player. Any mixed
strategy for the row player that guarantees that the row player gets an expected reward at
least equal to the value of the game is an optimal strategy for the row player. Similarly,
any mixed strategy for the column player that guarantees that the column player’s expected
loss is no more than the value of the game is an optimal strategy for the column player.
Thus, for Example 2, we have shown that the value of the game is zero, the row player’s
optimal strategy is (	

1
2

	, 	
1
2

	), and the column player’s optimal strategy is (	
1
2

	, 	
1
2

	).
Example 2 illustrates that by allowing mixed strategies, we have enabled each player

to find an optimal strategy in that if the row player departs from her optimal strategy, the
column player may have a strategy that reduces the row player’s expected reward below
the value of the game, and if the column player departs from her optimal strategy, the row
player may have a strategy that increases her expected reward above the value of the
game. Table 11 illustrates this idea for the game of Odds and Evens.

For example, suppose that Odd chooses a nonoptimal mixed strategy with x1 � 	
1
2

	.
Then, by choosing two fingers, Even ensures that Odd’s expected reward can be read from
BD in Figure 1. This means that if Odd chooses a mixed strategy having x1 � 	

1
2

	, then her
expected reward can be negative (less than the value of the game).

To close this section, we find the value and optimal strategies for a more complicated
game.

A fair coin is tossed, and the result is shown to player 1. Player 1 must then decide whether
to pass or bet. If player 1 passes, then he must pay player 2 $1. If player 1 bets, then player
2 (who does not know the result of the coin toss) may either fold or call the bet. If player
2 folds, then she pays player 1 $1. If player 2 calls and the coin comes up heads, then she
pays player 1 $2; if player 2 calls and the coin comes up tails, then player 1 must pay her

Coin Toss Game with BluffingE X A M P L E  3

TA B L E  11
How to Make a Nonoptimal Strategy Pay the Price

Odd’s Mixed Even Can Odd’s Expected Reward
Strategy Choose (Even’s expected losses)

x1 � 	
1
2

	 2 fingers � 0 (on BD in Figure 1)
x1 � 	

1
2

	 1 finger � 0 (on BC in Figure 1)

Even’s Mixed Odd Can Odd’s Expected Reward
Strategy Choose (Even’s expected losses)

y1 � 	
1
2

	 1 finger � 0 (on AB in Figure 2)
y1 � 	

1
2

	 2 fingers � 0 (on BE in Figure 2)



812 C H A P T E R 1 4 Game Theory

$2. Formulate this as a two-person zero-sum game. Then graphically determine the value
of the game and each player’s optimal strategy.

Solution Player 1’s strategies may be represented as follows: PP, pass on heads and pass on tails;
PB, pass on heads and bet on tails; BP, bet on heads and pass on tails; and BB, bet on
heads and bet on tails. Player 2 simply has the two strategies call and fold. For each choice
of strategies, player 1’s expected reward is as shown in Table 12.

To illustrate these computations, suppose player 1 chooses BP and player 2 calls. Then
with probability 	

1
2

	, heads is tossed. Then player 1 bets, is called, and wins $2 from player 2.
With probability 	

1
2

	, tails is tossed. In this case, player 1 passes and pays player 2 $1. Thus,
if player 1 chooses BP and player 2 calls, then player 1’s expected reward is (	

1
2

	)(2) �
(	

1
2

	)(�1) � $0.50. For each line in Table 12, the first term in the expectation corresponds to
heads being tossed, and the second term corresponds to tails being tossed.

Example 3 may be described as the two-person zero-sum game represented by the re-
ward matrix in Table 13. Because max (row minimum) � 0 � min (column maximum) �
	
1
2

	, this game does not have a saddle point. Observe that player 1 would be unwise ever to
choose the strategy PP, because (for each of player 2’s strategies) player 1 could do better
than PP by choosing either BP or BB. In general, a strategy i for a given player is domi-
nated by a strategy i
 if, for each of the other player’s possible strategies, the given player
does at least as well with strategy i
 as he or she does with strategy i, and if for at least
one of the other player’s strategies, strategy i
 is superior to strategy i. A player may elim-
inate all dominated strategies from consideration. We have just shown that for player 1, BP

TA B L E  12
Computation of Reward Matrix for Example 3

Player 1’s Expected Reward

PP vs. call (	
1
2

	)(�1) � (	
1
2

	)(�1) � �$1
PP vs. fold (	

1
2

	)(�1) � (	
1
2

	)(�1) � �$1
PB vs. call (	

1
2

	)(�1) � (	
1
2

	)(�2) � �$1.50
PB vs. fold (	

1
2

	)(�1) � (	
1
2

	)(1) �� �$0
BP vs. call (	

1
2

	)(2)� � (	
1
2

	)(�1) � �$0.50
BP vs. fold (	

1
2

	)(1)� � (	
1
2

	)(�1) � �$0
BB vs. call (	

1
2

	)(2)� � (	
1
2

	)(�2) � �$0
BB vs. fold (	

1
2

	)(1)� � (	
1
2

	)(1) �� �$1

TA B L E  13
Reward Matrix for Example 3

Player 2

Player 1 Call Fold Row Minimum

PP �1 �1 �1
PB �	

3
2

	 0 �	
3
2

	

BP 	
1
2

	 0 0
BB 0 1 0
Column 	

1
2

	 1
Maximum
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or BB dominates PP. Similarly, the reader should be able to show that player 1’s PB strat-
egy is dominated by BP or BB. After eliminating the dominated strategies PP and PB, we
are left with the game matrix shown in Table 14.

As with Odds and Evens, this game has no saddle point, and we proceed with a graph-
ical solution. Let

x1 � probability that player 1 chooses BP

x2 � 1 � x1 � probability that player 1 chooses BB

y1 � probability that player 2 chooses call

y2 � 1 � y1 � probability that player 2 chooses fold

To determine the optimal strategy for player 1, observe that for any value of x1, her
expected reward against calling is

(	
1
2

	)(x1) � 0(1 � x1) � 	
x
2
1	

which is line segment AB in Figure 3. Against folding, player 1’s expected reward is

0(x1) � 1(1 � x1) � 1 � x1

which is line segment CD in Figure 3. Player 2 is assumed to know the value of x1, so
player 1’s expected reward (as a function of x1) is given by the piecewise linear curve AED

TA B L E  14
Reward Matrix for Example 3 After Dominated
Strategies Have Been Eliminated

Player 2

Player 1 Call Fold Row Minimum

BP 	
1
2

	 0 0
BB 0 1 0
Column 	

1
2

	 1
Maximum

Expected reward
to player 1

Player 2 picks fold

C (0, 1)

B (1, .5)

D (1, 0)

A (0, 0)

A

EPlayer 2 picks call

2
3 ,.2

.4

.6

.8

1.0

0
.2 .4

( (

.6 .8
x1

1.0

1
3

F I G U R E  3
How Player 1 Chooses

Optimal Strategy in
Example 3
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in Figure 3. Thus, to maximize her expected reward, player 1 should choose the value of
x1 corresponding to point E, which solves x1/2 � 1 � x1, or x1 � 	

2
3

	. Then x2 � 1 � 	
2
3

	 �
	
1
3

	, and player 1’s expected reward against either of player 2’s strategies is 	
x
2
1	 (or 1 �

x1) � 	
1
3

	.
How should player 2 choose y1? (Remember, y2 � 1 � y1.) For a given value of y1,

suppose player 1 chooses BP. Then her expected reward is

(	
1
2

	)(y1) � 0(1 � y1) � 	
y
2
1	

which is line segment AB in Figure 4. For a given value of y1, suppose player 1 chooses
BB. Then her expected reward is

0( y1) � 1(1 � y1) � 1 � y1

which is line segment CD in Figure 4. Thus, for a given value of y1, player 1 will choose
a strategy that causes his expected reward to be given by the piecewise linear curve CEB
in Figure 4. Knowing this, player 2 should choose the value of y1 corresponding to point
E in Figure 4. The value of y1 at point E is the solution to 	

y
2
1	 � 1 � y1, or y1 � 	

2
3

	 (and
y2 � 	

1
3

	). You should check that no matter what player 1 does, player 2’s mixed strategy
(	

2
3

	, 	
1
3

	) ensures that player 1 earns an expected reward of 	
1
3

	.
In summary, the value of the game is 	

1
3

	 to player 1; the optimal mixed strategy for
player 1 is (	

2
3

	, 	
1
3

	); and the optimal strategy for player 2 is also (	
2
3

	, 	
1
3

	).

R E M A R K S 1 Observe that player 1 should bet 	
1
3

	 of the time that she has a losing coin. Thus, our simple model
indicates that player 1’s optimal strategy includes bluffing.
2 In Problem 4 at the end of this section, it will be shown that if player 1 deviates from her opti-
mal strategy, player 2 can hold her to an expected reward that is less than the value (	

1
3

	) of the game.
Similarly, Problem 5 will show that if player 2 deviates from her optimal strategy, player 1 can earn
an expected reward in excess of the value (	

1
3

	) of the game.
3 Although we have only applied the graphical method to games in which each player (after dom-
inated strategies have been eliminated) has only two strategies, the graphical approach can be used
to solve two-person zero-sum games in which only one player has two strategies (games in which
the reward matrix is 2 � n or m � 2). We choose, however, to solve all non-2 � 2 two-person games
by the linear programming method outlined in the next section.

Expected reward
to player 1

Player 1 picks BB

C (0, 1)

B (1, .5)

D (1, 0)

A (0, 0)

A

EPlayer 1 picks BP

2
3 ,.2

.4

.6

.8

1.0

0
.2 .4

( (

.6 .8
x1

1.0

1
3

F I G U R E  4
How Player 2 Chooses

Optimal Strategy in
Example 3
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Markov Chains

Sometimes we are interested in how a random variable changes over time. For example, we
may want to know how the price of a share of stock or a firm’s market share evolves. The study
of how a random variable changes over time includes stochastic processes, which are ex-
plained in this chapter. In particular, we focus on a type of stochastic process known as a
Markov chain. Markov chains have been applied in areas such as education, marketing, health
services, finance, accounting, and production. We begin by defining the concept of a sto-
chastic process. In the rest of the chapter, we will discuss the basic ideas needed for an un-
derstanding of Markov chains.

17.1 What Is a Stochastic Process?
Suppose we observe some characteristic of a system at discrete points in time (labeled 0,
1, 2, . . .). Let Xt be the value of the system characteristic at time t. In most situations, Xt

is not known with certainty before time t and may be viewed as a random variable. A 
discrete-time stochastic process is simply a description of the relation between the random
variables X0, X1, X2, . . . . Some examples of discrete-time stochastic processes follow.

E X A M P L E  1

At time 0, I have $2. At times 1, 2, . . . , I play a game in which I bet $1. With probabil-
ity p, I win the game, and with probability 1 � p, I lose the game. My goal is to increase
my capital to $4, and as soon as I do, the game is over. The game is also over if my cap-
ital is reduced to $0. If we define Xt to be my capital position after the time t game (if
any) is played, then X0, X1, . . . , Xt may be viewed as a discrete-time stochastic process.
Note that X0 � 2 is a known constant, but X1 and later Xt’s are random. For example,
with probability p, X1 � 3, and with probability 1 � p, X1 � 1. Note that if Xt � 4, then
Xt�1 and all later Xt’s will also equal 4. Similarly, if Xt � 0, then Xt�1 and all later Xt’s
will also equal 0. For obvious reasons, this type of situation is called a gambler’s ruin
problem.

E X A M P L E  2

An urn contains two unpainted balls at present. We choose a ball at random and flip a
coin. If the chosen ball is unpainted and the coin comes up heads, we paint the chosen
unpainted ball red; if the chosen ball is unpainted and the coin comes up tails, we paint
the chosen unpainted ball black. If the ball has already been painted, then (whether heads
or tails has been tossed) we change the color of the ball (from red to black or from black
to red). To model this situation as a stochastic process, we define time t to be the time af-

Choosing Balls from an Urn

The Gambler’s Ruin
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ter the coin has been flipped for the tth time and the chosen ball has been painted. The
state at any time may be described by the vector [u r b], where u is the number of un-
painted balls in the urn, r is the number of red balls in the urn, and b is the number of
black balls in the urn. We are given that X0 � [2 0 0]. After the first coin toss, one
ball will have been painted either red or black, and the state will be either [1 1 0] or
[1 0 1]. Hence, we can be sure that X1 � [1 1 0] or X1 � [1 0 1]. Clearly, there
must be some sort of relation between the Xt’s. For example, if Xt � [0 2 0], we can
be sure that Xt�1 will be [0 1 1].

E X A M P L E  3

Let X0 be the price of a share of CSL Computer stock at the beginning of the current trad-
ing day. Also, let Xt be the price of a share of CSL stock at the beginning of the tth trad-
ing day in the future. Clearly, knowing the values of X0, X1, . . . , Xt tells us something
about the probability distribution of Xt�1; the question is, what does the past (stock prices
up to time t) tell us about Xt�1? The answer to this question is of critical importance in
finance. (See Section 17.2 for more details.)

We close this section with a brief discussion of continuous-time stochastic processes.
A continuous-time stochastic process is simply a stochastic process in which the state
of the system can be viewed at any time, not just at discrete instants in time. For example,
the number of people in a supermarket t minutes after the store opens for business may be
viewed as a continuous-time stochastic process. (Models involving continuous-time 
stochastic processes are studied in Chapter 20.) Since the price of a share of stock can be 
observed at any time (not just the beginning of each trading day), it may be viewed as a
continuous-time stochastic process. Viewing the price of a share of stock as a continuous-
time stochastic process has led to many important results in the theory of finance, in-
cluding the famous Black–Scholes option pricing formula.

17.2 What Is a Markov Chain?
One special type of discrete-time stochastic process is called a Markov chain. To simplify
our exposition, we assume that at any time, the discrete-time stochastic process can be in
one of a finite number of states labeled 1, 2, . . . , s.

D E F I N I T I O N ■

Essentially, (1) says that the probability distribution of the state at time t � 1 depends on
the state at time t (it) and does not depend on the states the chain passed through on the
way to it at time t.

In our study of Markov chains, we make the further assumption that for all states i and
j and all t, P(Xt�1 � j |Xt � i) is independent of t. This assumption allows us to write

P(Xt�1 � j |Xt � i) � pij (2)

A discrete-time stochastic process is a Markov chain if, for t � 0, 1, 2, . . . and
all states,

P(Xt�1 � it�1|Xt � it , Xt�1 � it�1, . . . , X1 � i1, X0 � i0)

� P(Xt�1 � it�1|Xt � it) ■ (1)

CSL Computer Stock
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where pij is the probability that given the system is in state i at time t, it will be in a state
j at time t � 1. If the system moves from state i during one period to state j during the
next period, we say that a transition from i to j has occurred. The pij’s are often referred
to as the transition probabilities for the Markov chain.

Equation (2) implies that the probability law relating the next period’s state to the cur-
rent state does not change (or remains stationary) over time. For this reason, (2) is often
called the Stationarity Assumption. Any Markov chain that satisfies (2) is called a sta-
tionary Markov chain.

Our study of Markov chains also requires us to define qi to be the probability that the
chain is in state i at time 0; in other words, P(X0 � i) � qi. We call the vector q � [q1

q2 ��� qs] the initial probability distribution for the Markov chain. In most applica-
tions, the transition probabilities are displayed as an s � s transition probability matrix
P. The transition probability matrix P may be written as

P � � �
Given that the state at time t is i, the process must be somewhere at time t � 1. This means
that for each i,

�
j�s

j�1

P(Xt�1 � j |P(Xt � i)) � 1

�
j�s

j�1

pij � 1

We also know that each entry in the P matrix must be nonnegative. Hence, all entries in the
transition probability matrix are nonnegative, and the entries in each row must sum to 1.

E X A M P L E  1

Find the transition matrix for Example 1.

Solution Since the amount of money I have after t � 1 plays of the game depends on the past his-
tory of the game only through the amount of money I have after t plays, we definitely
have a Markov chain. Since the rules of the game don’t change over time, we also have
a stationary Markov chain. The transition matrix is as follows (state i means that we have
i dollars):

State

$0 $1 $2 $3 $4

P � � �
If the state is $0 or $4, I don’t play the game anymore, so the state cannot change; hence,
p00 � p44 � 1. For all other states, we know that with probability p, the next period’s state
will exceed the current state by 1, and with probability 1 � p, the next period’s state will
be 1 less than the current state.

0

0

0

p

1

0

0

p

0

0

0

p

0

1 � p

0

0

0

1 � p

0

0

1

1 � p

0

0

0

0

1

2

3

4

The Gambler’s Ruin (Continued)

p1s

p2s

���

pss

� � �

� � �

� � �

p12

p22

���

ps2

p11

p21

���

ps1
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A transition matrix may be represented by a graph in which each node represents a
state and arc (i, j) represents the transition probability pij. Figure 1 gives a graphical rep-
resentation of Example 1’s transition probability matrix.

E X A M P L E  2

Find the transition matrix for Example 2.

Solution Since the state of the urn after the next coin toss only depends on the past history of the
process through the state of the urn after the current coin toss, we have a Markov chain.
Since the rules don’t change over time, we have a stationary Markov chain. The transition
matrix for Example 2 is as follows:

State

[0 1 1] [0 2 0] [0 0 2] [2 0 0] [1 1 0] [1 0 1]

P � � �
To illustrate the determination of the transition matrix, we determine the [1 1 0] row
of this transition matrix. If the current state is [1 1 0], then one of the events shown
in Table 1 must occur. Thus, the next state will be [1 0 1] with probability �

1
2

�, [0 2
0] with probability �

1
4

�, and [0 1 1] with probability �
1
4

�. Figure 2 gives a graphical rep-
resentation of this transition matrix.

0

0

0

�
1
2

�

�
1
2

�

0

0

0

0

�
1
2

�

0

�
1
2

�

0

0

0

0

0

0

�
1
2

�

0

0

0

0

�
1
4

�

�
1
2

�

0

0

0

�
1
4

�

0

0

1

1

0

�
1
4

�

�
1
4

�

[0 1 1]

[0 2 0]

[0 0 2]

[2 0 0]

[1 1 0]

[1 0 1]

Choosing Balls (Continued)

0 1

1 1

2 3 4

1  –  p p

p

p1  –  p

1  –  p

F I G U R E  1
Graphical Representation

of Transition Matrix for
Gambler’s Ruin

TA B L E  1
Computations of Transition Probabilities If Current State Is [1 1 0]

Event Probability New State

Flip heads and choose unpainted ball �
1
4

� [0 2 0]

Choose red ball �
1
2

� [1 0 1]

Flip tails and choose unpainted ball �
1
4

� [0 1 1]

1

1

0, 1, 1 2, 0, 0

0, 2, 0 1, 1, 0

0, 0, 2 1, 0, 1
1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
4

F I G U R E  2
Graphical

Representation of
Transition Matrix 

for Urn
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E X A M P L E  3

In recent years, students of finance have devoted much effort to answering the question
of whether the daily price of a stock share can be described by a Markov chain. Suppose
the daily price of a stock share (such as CSL Computer stock) can be described by a
Markov chain. What does that tell us? Simply that the probability distribution of tomor-
row’s price for one share of CSL stock depends only on today’s price of CSL stock, not
on the past prices of CSL stock. If the price of a stock share can be described by a Markov
chain, the “chartists” who attempt to predict future stock prices on the basis of the pat-
terns followed by past stock prices are barking up the wrong tree. For example, suppose
the daily price of a share of CSL stock follows a Markov chain, and today’s price for a
share of CSL stock is $50. Then to predict tomorrow’s price of a share of CSL stock, it
does not matter whether the price has increased or decreased during each of the last 30
days. In either situation (or any other situation that might have led to today’s $50 price),
a prediction of tomorrow’s stock price should be based only on the fact that today’s price
of CSL stock is $50. At this time, the consensus is that for most stocks the daily price of
the stock can be described as a Markov chain. This idea is often referred to as the effi-
cient market hypothesis.

P R O B L E M S
Group A

CSL Computer Stock (Continued)

1 In Smalltown, 90% of all sunny days are followed by
sunny days, and 80% of all cloudy days are followed by
cloudy days. Use this information to model Smalltown’s
weather as a Markov chain.

2 Consider an inventory system in which the sequence of
events during each period is as follows. (1) We observe the
inventory level (call it i) at the beginning of the period. 
(2) If i � 1, 4 � i units are ordered. If i 	 2, 0 units are
ordered. Delivery of all ordered units is immediate. (3) With
probability �

1
3

�, 0 units are demanded during the period; with
probability �

1
3

�, 1 unit is demanded during the period; and
with probability �

1
3

�, 2 units are demanded during the period.
(4) We observe the inventory level at the beginning of the
next period.

Define a period’s state to be the period’s beginning
inventory level. Determine the transition matrix that could
be used to model this inventory system as a Markov chain.

3 A company has two machines. During any day, each
machine that is working at the beginning of the day has a �

1
3

�

chance of breaking down. If a machine breaks down during
the day, it is sent to a repair facility and will be working two
days after it breaks down. (Thus, if a machine breaks down
during day 3, it will be working at the beginning of day 5.)
Letting the state of the system be the number of machines
working at the beginning of the day, formulate a transition
probability matrix for this situation.

Group B

4 Referring to Problem 1, suppose that tomorrow’s
Smalltown weather depends on the last two days of

Smalltown weather, as follows: (1) If the last two days have
been sunny, then 95% of the time, tomorrow will be sunny.
(2) If yesterday was cloudy and today is sunny, then 70% of
the time, tomorrow will be sunny. (3) If yesterday was sunny
and today is cloudy, then 60% of the time, tomorrow will
be cloudy. (4) If the last two days have been cloudy, then
80% of the time, tomorrow will be cloudy.

Using this information, model Smalltown’s weather as a
Markov chain. If tomorrow’s weather depended on the last
three days of Smalltown weather, how many states will be
needed to model Smalltown’s weather as a Markov chain?
(Note: The approach used in this problem can be used to
model a discrete-time stochastic process as a Markov chain
even if Xt�1 depends on states prior to Xt, such as Xt�1 in
the current example.)

5 Let Xt be the location of your token on the Monopoly
board after t dice rolls. Can Xt be modeled as a Markov
chain? If not, how can we modify the definition of the state
at time t so that X0, X1, . . . , Xt, . . . would be a Markov
chain? (Hint: How does a player go to Jail? In this problem,
assume that players who are sent to Jail stay there until they
roll doubles or until they have spent three turns there,
whichever comes first.)

6 In Problem 3, suppose a machine that breaks down
returns to service three days later (for instance, a machine
that breaks down during day 3 would be back in working
order at the beginning of day 6). Determine a transition
probability matrix for this situation.
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17.3 n-Step Transition Probabilities
Suppose we are studying a Markov chain with a known transition probability matrix P.
(Since all chains that we will deal with are stationary, we will not bother to label our
Markov chains as stationary.) A question of interest is: If a Markov chain is in state i at
time m, what is the probability that n periods later the Markov chain will be in state j?
Since we are dealing with a stationary Markov chain, this probability will be independent
of m, so we may write

P(Xm�n � j |Xm � i) � P(Xn � j |X0 � i) � Pij(n)

where Pij(n) is called the n-step probability of a transition from state i to state j.
Clearly, Pij(1) � pij. To determine Pij(2), note that if the system is now in state i, then

for the system to end up in state j two periods from now, we must go from state i to some
state k and then go from state k to state j (see Figure 3). This reasoning allows us to write

Pij(2) � �
k�s

k�1

(probability of transition from i to k)

� (probability of transition from k to j)

Using the definition of P, the transition probability matrix, we rewrite the last equation as

Pij(2) � �
k�s

k�1

pikpkj (3)

The right-hand side of (3) is just the scalar product of row i of the P matrix with column
j of the P matrix. Hence, Pij (2) is the ij th element of the matrix P2. By extending this
reasoning, it can be shown that for n 
 1,

Pij(n) � ij th element of Pn (4)

Of course, for n � 0, Pij (0) � P(X0 � j |X0 � i), so we must write

Pij (0) � �
We illustrate the use of Equation (4) in Example 4.

if j � i

if j � i

1

0

i j

1

2

k

s

State

Time 0 Time 1 Time 2

pi1

pi2

pik

pis psj

pk j

p1j

p2j

F I G U R E  3
Pij (2) � pi 1p1j �

pi 2p2j � � � � � pi spsj
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E X A M P L E  4

Suppose the entire cola industry produces only two colas. Given that a person last pur-
chased cola 1, there is a 90% chance that her next purchase will be cola 1. Given that a 
person last purchased cola 2, there is an 80% chance that her next purchase will be cola 2.

1 If a person is currently a cola 2 purchaser, what is the probability that she will pur-
chase cola 1 two purchases from now?

2 If a person is currently a cola 1 purchaser, what is the probability that she will pur-
chase cola 1 three purchases from now?

Solution We view each person’s purchases as a Markov chain with the state at any given time be-
ing the type of cola the person last purchased. Hence, each person’s cola purchases may
be represented by a two-state Markov chain, where

State 1 � person has last purchased cola 1

State 2 � person has last purchased cola 2

If we define Xn to be the type of cola purchased by a person on her nth future cola pur-
chase (present cola purchase � X0), then X0, X1, . . . may be described as the Markov
chain with the following transition matrix:

Cola 1 Cola 2

P � � �
We can now answer questions 1 and 2.

1 We seek P(X2 � 1|X0 � 2) � P21(2) � element 21 of P2:

P2 � � � � � � � �
Hence, P21(2) � .34. This means that the probability is .34 that two purchases in the fu-
ture a cola 2 drinker will purchase cola 1. By using basic probability theory, we may ob-
tain this answer in a different way (see Figure 4). Note that P21(2) � (probability that next
purchase is cola 1 and second purchase is cola 1) � (probability that next purchase is cola
2 and second purchase is cola 1) � p21p11 � p22p21 � (.20)(.90) � (.80)(.20) � .34.

2 We seek P11(3) � element 11 of P3:

P3 � P(P2) � � � � � � � �
Therefore, P11(3) � .781.

.219

.562

.781

.438

.17

.66

.83

.34

.10

.80

.90

.20

.17

.66

.83

.34

.10

.80

.90

.20

.10

.80

.90

.20

.10

.80

.90

.20

Cola 1

Cola 2

The Cola Example

Time 0 Time 1 Time 2

p22  =  .80 p21  =  .20

p21  =  .20 p11  =  .90

Cola 2

Cola 2

Cola 1

Cola 1

F I G U R E  4
Probability That Two
Periods from Now, a

Cola 2 Purchaser Will
Purchase Cola 1 

Is .20(.90) �
.80(.20) � .34
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In many situations, we do not know the state of the Markov chain at time 0. As de-
fined in Section 17.2, let qi be the probability that the chain is in state i at time 0. Then
we can determine the probability that the system is in state i at time n by using the fol-
lowing reasoning (see Figure 5).

Probability of being in state j at time n

� �
i�s

i�1

(probability that state is originally i)

� � (probability of going from i to j in n transitions)
(5)

� �
i�s

i�1

qiPij(n)

� q(column j of Pn)

where q � [q1 q2 � � � qs].
To illustrate the use of (5), we answer the following question: Suppose 60% of all peo-

ple now drink cola 1, and 40% now drink cola 2. Three purchases from now, what fraction
of all purchasers will be drinking cola 1? Since q � [.60 .40] and q(column 1 of P3) �
probability that three purchases from now a person drinks cola 1, the desired probability is

[.60 .40] � � � .6438

Hence, three purchases from now, 64% of all purchasers will be purchasing cola 1.
To illustrate the behavior of the n-step transition probabilities for large values of n, we

have computed several of the n-step transition probabilities for the Cola example in Table 2.

.781

.438

s

i

j

2

1

Time 0 Time n

q1 P1j(n)

P2j(n)

Pij(n)

Ps j(n)

q2

qi

qs

F I G U R E  5
Determination of

Probability of Being in
State j at Time n When
Initial State Is Unknown

TA B L E  2
n-Step Transition Probabilities for Cola Drinkers

n P11(n) P12(n) P21(n) P22(n)

1 .90 .10 .20 .80
2 .83 .17 .34 .66
3 .78 .22 .44 .56
4 .75 .25 .51 .49
5 .72 .28 .56 .44

10 .68 .32 .65 .35
20 .67 .33 .67 .33
30 .67 .33 .67 .33
40 .67 .33 .67 .33
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For large n, both P11(n) and P21(n) are nearly constant and approach .67. This means
that for large n, no matter what the initial state, there is a .67 chance that a person will
be a cola 1 purchaser. Similarly, we see that for large n, both P12(n) and P22(n) are nearly
constant and approach .33. This means that for large n, no matter what the initial state,
there is a .33 chance that a person will be a cola 2 purchaser. In Section 5.5, we make a
thorough study of this settling down of the n-step transition probabilities.

R E M A R K We can easily multiply matrices on a spreadsheet using the MMULT command, as discussed in Sec-
tion 13.7.

P R O B L E M S
Group A

1 Each American family is classified as living in an urban,
rural, or suburban location. During a given year, 15% of all
urban families move to a suburban location, and 5% move
to a rural location; also, 6% of all suburban families move
to an urban location, and 4% move to a rural location;
finally, 4% of all rural families move to an urban location,
and 6% move to a suburban location.

a If a family now lives in an urban location, what is
the probability that it will live in an urban area two years
from now? A suburban area? A rural area?
b Suppose that at present, 40% of all families live in
an urban area, 35% live in a suburban area, and 25%
live in a rural area. Two years from now, what percent-
age of American families will live in an urban area?
c What problems might occur if this model were used
to predict the future population distribution of the United
States?

17.4 Classification of States in a Markov Chain
In Section 17.3, we mentioned the fact that after many transitions, the n-step transition
probabilities tend to settle down. Before we can discuss this in more detail, we need to
study how mathematicians classify the states of a Markov chain. We use the following
transition matrix to illustrate most of the following definitions (see Figure 6).

P � � �
0

0

0

.1

.2

0

0

.7

.4

.8

0

0

.3

.5

0

.6

.5

0

0

0

.4

.5

0

0

0

2 The following questions refer to Example 1.
a After playing the game twice, what is the probabil-
ity that I will have $3? How about $2?
b After playing the game three times, what is the prob-
ability that I will have $2?

3 In Example 2, determine the following n-step transition
probabilities:

a After two balls are painted, what is the probability
that the state is [0 2 0]?
b After three balls are painted, what is the probability that
the state is [0 1 1]? (Draw a diagram like Figure 4.)

D E F I N I T I O N ■ Given two states i and j, a path from i to j is a sequence of transitions that begins
in i and ends in j, such that each transition in the sequence has a positive
probability of occurring. ■

A state j is reachable from state i if there is a path leading from i to j. ■
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D E F I N I T I O N ■

For the transition probability matrix P represented in Figure 6, state 5 is reachable from
state 3 (via the path 3–4–5), but state 5 is not reachable from state 1 (there is no path
from 1 to 5 in Figure 6). Also, states 1 and 2 communicate (we can go from 1 to 2 and
from 2 to 1).

D E F I N I T I O N ■

From the Markov chain with transition matrix P in Figure 6, S1 � {1, 2} and S2 � {3,
4, 5} are both closed sets. Observe that once we enter a closed set, we can never leave
the closed set (in Figure 6, no arc begins in S1 and ends in S2 or begins in S2 and ends 
in S1).

D E F I N I T I O N ■

Whenever we enter an absorbing state, we never leave the state. In Example 1, the gam-
bler’s ruin, states 0 and 4 are absorbing states. Of course, an absorbing state is a closed
set containing only one state.

D E F I N I T I O N ■

In other words, a state i is transient if there is a way to leave state i that never returns
to state i. In the gambler’s ruin example, states 1, 2, and 3 are transient states. For exam-
ple (see Figure 1), from state 2, it is possible to go along the path 2–3–4, but there is no
way to return to state 2 from state 4. Similarly, in Example 2, [2 0 0], [1 1 0], and
[1 0 1] are all transient states (in Figure 2, there is a path from [1 0 1] to [0 0
2], but once both balls are painted, there is no way to return to [1 0 1]).

After a large number of periods, the probability of being in any transient state i is zero.
Each time we enter a transient state i, there is a positive probability that we will leave i
forever and end up in the state j described in the definition of a transient state. Thus, even-
tually we are sure to enter state j (and then we will never return to state i). To illustrate,
in Example 2, suppose we are in the transient state [1 0 1]. With probability 1, the un-
painted ball will eventually be painted, and we will never reenter state [1 0 1] (see Fig-
ure 2).

A state i is a transient state if there exists a state j that is reachable from i, but
the state i is not reachable from state j. ■

A state i is an absorbing state if pii � 1. ■

A set of states S in a Markov chain is a closed set if no state outside of S is
reachable from any state in S. ■

Two states i and j are said to communicate if j is reachable from i, and i is
reachable from j. ■

1 2 3 4

5

.4

.4

.1.8.5

S1

S2

.2

.5
.5

.6 .7
.3

F I G U R E  6
Graphical

Representation of
Transition Matrix
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D E F I N I T I O N ■

In Example 1, states 0 and 4 are recurrent states (and also absorbing states), and in Ex-
ample 2, [0 2 0], [0 0 2], and [0 1 1] are recurrent states. For the transition ma-
trix P in Figure 6, all states are recurrent.

D E F I N I T I O N ■

For the Markov chain with transition matrix

Q � � �
each state has period 3. For example, if we begin in state 1, the only way to return to state
1 is to follow the path 1–2–3–1 for some number of times (say, m). (See Figure 7.) Hence,
any return to state 1 will take 3m transitions, so state 1 has period 3. Wherever we are,
we are sure to return three periods later.

D E F I N I T I O N ■

The gambler’s ruin example is not an ergodic chain, because (for example) states 3 and
4 do not communicate. Example 2 is also not an ergodic chain, because (for example) [2
0 0] and [0 1 1] do not communicate. Example 4, the cola example, is an ergodic
Markov chain. Of the following three Markov chains, P1 and P3 are ergodic, and P2 is not
ergodic.

P1 � � � Ergodic

P2 � � �Nonergodic

0

0

�
1
3

�

�
3
4

�

0

0

�
2
3

�

�
1
4

�

�
1
2

�

�
1
2

�

0

0

�
1
2

�

�
1
2

�

0

0

0

�
1
2

�

�
3
4

�

�
2
3

�

0

�
1
4

�

�
1
3

�

�
1
2

�

0

If all states in a chain are recurrent, aperiodic, and communicate with each other,
the chain is said to be ergodic. ■

0

1

0

1

0

0

0

0

1

A state i is periodic with period k 
 1 if k is the smallest number such that all
paths leading from state i back to state i have a length that is a multiple of k. If a
recurrent state is not periodic, it is referred to as aperiodic. ■

If a state is not transient, it is called a recurrent state. ■

1

1 1

1

2 3F I G U R E  7
A Periodic Markov

Chain k � 3
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P3 � � � Ergodic

P2 is not ergodic because there are two closed classes of states (class 1 � {1, 2} and class
2 � {3, 4}), and the states in different classes do not communicate with each other.

After the next two sections, the importance of the concepts introduced in this section
will become clear.

�
1
4

�

0

�
1
3

�

�
1
2

�

�
1
3

�

�
2
3

�

�
1
4

�

�
2
3

�

0

P R O B L E M S
Group A

1 In Example 1, what is the period of states 1 and 3?

2 Is the Markov chain of Section 17.3, Problem 1, an
ergodic Markov chain?

3 Consider the following transition matrix:

P � � �
a Which states are transient?
b Which states are recurrent?

0
1
0
0
0
�
2
3

�

0
0
1
0
0
0

0
0
0
�
1
2

�

0
0

1
0
0
0
0
0

0
0
0
�
1
4

�

0
�
1
3

�

0
0
0
�
1
4

�

1
0

c Identify all closed sets of states.
d Is this chain ergodic?

4 For each of the following chains, determine whether the
Markov chain is ergodic. Also, for each chain, determine
the recurrent, transient, and absorbing states.

P1 � � � P2 � � �
5 Fifty-four players (including Gabe Kaplan and James
Garner) participated in the 1980 World Series of Poker.
Each player began with $10,000. Play continued until one
player had won everybody else’s money. If the World Series
of Poker were to be modeled as a Markov chain, how many
absorbing states would the chain have?

6 Which of the following chains is ergodic?

0
.1
0
1

0
.9
.1
0

.8
0
.5
0

.2
0
.4
0

.2
0
.1

.8

.7

.5

0
.3
.4

P1 � � � P2 � � �
17.5 Steady-State Probabilities and Mean First Passage Times

In our discussion of the cola example (Example 4), we found that after a long time, the prob-
ability that a person’s next cola purchase would be cola 1 approached .67 and .33 that it would
be cola 2 (see Table 2). These probabilities did not depend on whether the person was ini-
tially a cola 1 or a cola 2 drinker. In this section, we discuss the important concept of steady-
state probabilities, which can be used to describe the long-run behavior of a Markov chain.

The following result is vital to an understanding of steady-state probabilities and the
long-run behavior of Markov chains.

T H E O R E M  1

Let P be the transition matrix for an s-state ergodic chain.† Then there exists a vec-
tor p � [p 1 p 2 � � � p s] such that

.3

.2

.2

.8

0
.4
.1
0

0
.2
.1
0

.7

.2

.6

.2

.6

.4

.5

0
.3
.5

.4

.3
0

†To see why Theorem 1 fails to hold for a nonergodic chain, see Problems 11 and 12 at the end of this sec-
tion. For a proof of this theorem, see Isaacson and Madsen (1976, Chapter 3).
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Match PuzzleE X A M P L E  1

MilkE X A M P L E  2

†This section covers topics that may be omitted with no loss of continuity.

Deterministic Dynamic Programming

Dynamic programming is a technique that can be used to solve many optimization problems.
In most applications, dynamic programming obtains solutions by working backward from the
end of a problem toward the beginning, thus breaking up a large, unwieldy problem into a 
series of smaller, more tractable problems.

We introduce the idea of working backward by solving two well-known puzzles and then
show how dynamic programming can be used to solve network, inventory, and resource-
allocation problems. We close the chapter by showing how to use spreadsheets to solve 
dynamic programming problems.

18.1 Two Puzzles†

In this section, we show how working backward can make a seemingly difficult problem
almost trivial to solve.

Suppose there are 30 matches on a table. I begin by picking up 1, 2, or 3 matches. Then
my opponent must pick up 1, 2, or 3 matches. We continue in this fashion until the last
match is picked up. The player who picks up the last match is the loser. How can I (the
first player) be sure of winning the game?

Solution If I can ensure that it will be my opponent’s turn when 1 match remains, I will certainly win.
Working backward one step, if I can ensure that it will be my opponent’s turn when 5 matches
remain, I will win. The reason for this is that no matter what he does when 5 matches re-
main, I can make sure that when he has his next turn, only 1 match will remain. For exam-
ple, suppose it is my opponent’s turn when 5 matches remain. If my opponent picks up 2
matches, I will pick up 2 matches, leaving him with 1 match and sure defeat. Similarly, if I
can force my opponent to play when 5, 9, 13, 17, 21, 25, or 29 matches remain, I am sure
of victory. Thus, I cannot lose if I pick up 30 � 29 � 1 match on my first turn. Then I sim-
ply make sure that my opponent will always be left with 29, 25, 21, 17, 13, 9, or 5 matches
on his turn. Notice that we have solved this puzzle by working backward from the end of the
problem toward the beginning. Try solving this problem without working backward!

I have a 9-oz cup and a 4-oz cup. My mother has ordered me to bring home exactly 6 oz
of milk. How can I accomplish this goal?
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Solution By starting near the end of the problem, I cleverly realize that the problem can easily be
solved if I can somehow get 1 oz of milk into the 4-oz cup. Then I can fill the 9-oz cup
and empty 3 oz from the 9-oz cup into the partially filled 4-oz cup. At this point, I will
be left with 6 oz of milk. After I have this flash of insight, the solution to the problem
may easily be described as in Table 1 (the initial situation is written last, and the final sit-
uation is written first).

P R O B L E M S
Group A

1 Suppose there are 40 matches on a table. I begin by
picking up 1, 2, 3, or 4 matches. Then my opponent must
pick up 1, 2, 3, or 4 matches. We continue until the last
match is picked up. The player who picks up the last match
is the loser. Can I be sure of victory? If so, how?

2 Three players have played three rounds of a gambling
game. Each round has one loser and two winners. The losing
player must pay each winner the amount of money that the
winning player had at the beginning of the round. At the end
of the three rounds each player has $10. You are told that
each player has won one round. By working backward,
determine the original stakes of the three players. [Note: If
the answer turns out to be (for example) 5, 15, 10, don’t
worry about which player had which stake; we can’t really
tell which player ends up with how much, but we can
determine the numerical values of the original stakes.]

Group B

3 We have 21 coins and are told that one is heavier than
any of the other coins. How many weighings on a balance
will it take to find the heaviest coin? (Hint: If the heaviest
coin is in a group of three coins, we can find it in one
weighing. Then work backward to two weighings, and 
so on.)

4 Given a 7-oz cup and a 3-oz cup, explain how we can
return from a well with 5 oz of water.

18.2 A Network Problem
Many applications of dynamic programming reduce to finding the shortest (or longest) path
that joins two points in a given network. The following example illustrates how dynamic
programming (working backward) can be used to find the shortest path in a network.

TA B L E  1
Moves in the Cup-and-Milk Problem

No. of Ounces No. of Ounces
in 9-oz Cup in 4-oz Cup

6 0
6 4
9 1
0 1
1 0
1 4
5 0
5 4
9 0
0 0
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Joe Cougar lives in New York City, but he plans to drive to Los Angeles to seek fame and
fortune. Joe’s funds are limited, so he has decided to spend each night on his trip at a
friend’s house. Joe has friends in Columbus, Nashville, Louisville, Kansas City, Omaha,
Dallas, San Antonio, and Denver. Joe knows that after one day’s drive he can reach
Columbus, Nashville, or Louisville. After two days of driving, he can reach Kansas City,
Omaha, or Dallas. After three days of driving, he can reach San Antonio or Denver. Fi-
nally, after four days of driving, he can reach Los Angeles. To minimize the number of
miles traveled, where should Joe spend each night of the trip? The actual road mileages
between cities are given in Figure 1.

Solution Joe needs to know the shortest path between New York and Los Angeles in Figure 1. We
will find it by working backward. We have classified all the cities that Joe can be in at the
beginning of the nth day of his trip as stage n cities. For example, because Joe can only
be in San Antonio or Denver at the beginning of the fourth day (day 1 begins when Joe
leaves New York), we classify San Antonio and Denver as stage 4 cities. The reason for
classifying cities according to stages will become apparent later.

The idea of working backward implies that we should begin by solving an easy prob-
lem that will eventually help us to solve a complex problem. Hence, we begin by finding
the shortest path to Los Angeles from each city in which there is only one day of driving
left (stage 4 cities). Then we use this information to find the shortest path to Los Ange-
les from each city for which only two days of driving remain (stage 3 cities). With this
information in hand, we are able to find the shortest path to Los Angeles from each city
that is three days distant (stage 2 cities). Finally, we find the shortest path to Los Ange-
les from each city (there is only one: New York) that is four days away.

To simplify the exposition, we use the numbers 1, 2, . . . , 10 given in Figure 1 to la-
bel the 10 cities. We also define cij to be the road mileage between city i and city j. For
example, c35 � 580 is the road mileage between Nashville and Kansas City. We let ft(i)
be the length of the shortest path from city i to Los Angeles, given that city i is a stage t
city.†

Stage 4 Computations

We first determine the shortest path to Los Angeles from each stage 4 city. Since there is
only one path from each stage 4 city to Los Angeles, we immediately see that f4(8) �
1,030, the shortest path from Denver to Los Angeles simply being the only path from Den-
ver to Los Angeles. Similarly, f4(9) � 1,390, the shortest (and only) path from San An-
tonio to Los Angeles.

Stage 3 Computations

We now work backward one stage (to stage 3 cities) and find the shortest path to Los An-
geles from each stage 3 city. For example, to determine f3(5), we note that the shortest
path from city 5 to Los Angeles must be one of the following:

Path 1 Go from city 5 to city 8 and then take the shortest path from city 8 to city 10.

Path 2 Go from city 5 to city 9 and then take the shortest path from city 9 to city 10.

The length of path 1 may be written as c58 � f4(8), and the length of path 2 may be writ-
ten as c59 � f4(9). Hence, the shortest distance from city 5 to city 10 may be written as

Shortest PathE X A M P L E  3

†In this example, keeping track of the stages is unnecessary; to be consistent with later examples, however,
we do keep track.
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f3(5) � min {c58 � f4(8) � 610 � 1,030 � 1,640*

c59 � f4(9) � 790 � 1,390 � 2,180

[the * indicates the choice of arc that attains the f3(5)]. Thus, we have shown that the
shortest path from city 5 to city 10 is the path 5–8–10. Note that to obtain this result, we
made use of our knowledge of f4(8) and f4(9).

Similarly, to find f3(6), we note that the shortest path to Los Angeles from city 6 must
begin by going to city 8 or to city 9. This leads us to the following equation:

f3(6) � min {c68 � f4(8) � 540 � 1,030 � 1,570*

c69 � f4(9) � 940 � 1,390 � 2,330

Thus, f3(6) � 1,570, and the shortest path from city 6 to city 10 is the path 6–8–10.
To find f3(7), we note that

f3(7) � min {c78 � f4(8) � 790 � 1,030 � 1,820

c79 � f4(9) � 270 � 1,390 � 1,660*

Therefore, f3(7) � 1,660, and the shortest path from city 7 to city 10 is the path 7–9–10.

Stage 2 Computations

Given our knowledge of f3(5), f3(6), and f3(7), it is now easy to work backward one more
stage and compute f2(2), f2(3), and f2(4) and thus the shortest paths to Los Angeles from
city 2, city 3, and city 4. To illustrate how this is done, we find the shortest path (and its
length) from city 2 to city 10. The shortest path from city 2 to city 10 must begin by go-
ing from city 2 to city 5, city 6, or city 7. Once this shortest path gets to city 5, city 6, or
city 7, then it must follow a shortest path from that city to Los Angeles. This reasoning
shows that the shortest path from city 2 to city 10 must be one of the following:

Path 1 Go from city 2 to city 5. Then follow a shortest path from city 5 to city 10. A
path of this type has a total length of c25 � f3(5).

Los Angeles
10

Denver
8

San Antonio
9

Kansas City
5

Columbus
2

550

680

580 610

790

7901,050

790 540

900 760

660

510

700

830

270

940 1,390

770

Stage 1 Stage 5

Stage 2 Stage 3

Stage 4

1,030

Omaha
6

Nashville
3

Dallas
7

Louisville
4

New York
1

F I G U R E  1
Joe’s Trip Across the

United States



Path 2 Go from city 2 to city 6. Then follow a shortest path from city 6 to city 10. A
path of this type has a total length of c26 � f3(6).

Path 3 Go from city 2 to city 7. Then follow a shortest path from city 7 to city 10. This
path has a total length of c27 � f3(7). We may now conclude that

c25 � f3(5) � 680 � 1,640 � 2,320*

f2(2) � min �c26 � f3(6) � 790 � 1,570 � 2,360

c27 � f3(7) � 1,050 � 1,660 � 2,710

Thus, f2(2) � 2,320, and the shortest path from city 2 to city 10 is to go from city 2 to
city 5 and then follow the shortest path from city 5 to city 10 (5–8–10).

Similarly,

c35 � f3(5) � 580 � 1,640 � 2,220*

f2(3) � min �c36 � f3(6) � 760 � 1,570 � 2,330

c37 � f3(7) � 660 � 1,660 � 2,320

Thus, f2(3) � 2,220, and the shortest path from city 3 to city 10 consists of arc 3–5 and
the shortest path from city 5 to city 10 (5–8–10).

In similar fashion,

c45 � f3(5) � 510 � 1,640 � 2,150*

f2(4) � min �c46 � f3(6) � 700 � 1,570 � 2,270

c47 � f3(7) � 830 � 1,660 � 2,490

Thus, f2(4) � 2,150, and the shortest path from city 4 to city 10 consists of arc 4–5 and
the shortest path from city 5 to city 10 (5–8–10).

Stage 1 Computations

We can now use our knowledge of f2(2), f2(3), and f2(4) to work backward one more stage
to find f1(1) and the shortest path from city 1 to city 10. Note that the shortest path from
city 1 to city 10 must begin by going to city 2, city 3, or city 4. This means that the short-
est path from city 1 to city 10 must be one of the following:

Path 1 Go from city 1 to city 2 and then follow a shortest path from city 2 to city 10.
The length of such a path is c12 � f2(2).

Path 2 Go from city 1 to city 3 and then follow a shortest path from city 3 to city 10.
The length of such a path is c13 � f2(3).

Path 3 Go from city 1 to city 4 and then follow a shortest path from city 4 to city 10.
The length of such a path is c14 � f2(4). It now follows that

c12 � f2(2) � 550 � 2,320 � 2,870*

f1(1) � min �c13 � f2(3) � 900 � 2,220 � 3,120

c14 � f2(4) � 770 � 2,150 � 2,920

Determination of the Optimal Path

Thus, f1(1) � 2,870, and the shortest path from city 1 to city 10 goes from city 1 to city
2 and then follows the shortest path from city 2 to city 10. Checking back to the f2(2) cal-
culations, we see that the shortest path from city 2 to city 10 is 2–5–8–10. Translating the
numerical labels into real cities, we see that the shortest path from New York to Los An-

1 8 . 2 A Network Problem 965
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geles passes through New York, Columbus, Kansas City, Denver, and Los Angeles. This
path has a length of f1(1) � 2,870 miles.

Computational Efficiency of Dynamic Programming

For Example 3, it would have been an easy matter to determine the shortest path from
New York to Los Angeles by enumerating all the possible paths [after all, there are only
3(3)(2) � 18 paths]. Thus, in this problem, the use of dynamic programming did not re-
ally serve much purpose. For larger networks, however, dynamic programming is much
more efficient for determining a shortest path than the explicit enumeration of all paths.
To see this, consider the network in Figure 2. In this network, it is possible to travel from
any node in stage k to any node in stage k � 1. Let the distance between node i and node
j be cij. Suppose we want to determine the shortest path from node 1 to node 27. One way
to solve this problem is explicit enumeration of all paths. There are 55 possible paths from
node 1 to node 27. It takes five additions to determine the length of each path. Thus, ex-
plicitly enumerating the length of all paths requires 55(5) � 56 � 15,625 additions.

Suppose we use dynamic programming to determine the shortest path from node 1 to
node 27. Let ft(i) be the length of the shortest path from node i to node 27, given that
node i is in stage t. To determine the shortest path from node 1 to node 27, we begin by
finding f6(22), f6(23), f6(24), f6(25), and f6(26). This does not require any additions. Then
we find f5(17), f5(18), f5(19), f5(20), f5(21). For example, to find f5(21) we use the fol-
lowing equation:

f5(21) � min
j

{c21, j � f6( j)} ( j � 22, 23, 24, 25, 26)

Determining f5(21) in this manner requires five additions. Thus, the calculation of all the
f5(�)’s requires 5(5) � 25 additions. Similarly, the calculation of all the f4(�)’s requires 25
additions, and the calculation of all the f3(�)’s requires 25 additions. The determination of
all the f2(�)’s also requires 25 additions, and the determination of f1(1) requires 5 addi-
tions. Thus, in total, dynamic programming requires 4(25) � 5 � 105 additions to find
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the shortest path from node 1 to node 27. Because explicit enumeration requires 15,625
additions, we see that dynamic programming requires only 0.007 times as many additions
as explicit enumeration. For larger networks, the computational savings effected by dy-
namic programming are even more dramatic.

Besides additions, determination of the shortest path in a network requires compar-
isons between the lengths of paths. If explicit enumeration is used, then 55 � 1 � 3,124
comparisons must be made (that is, compare the length of the first two paths, then com-
pare the length of the third path with the shortest of the first two paths, and so on). If dy-
namic programming is used, then for t � 2, 3, 4, 5, determination of each ft(i) requires 
5 � 1 � 4 comparisons. Then to compute f1(1), 5 � 1 � 4 comparisons are required.
Thus, to find the shortest path from node 1 to node 27, dynamic programming requires a
total of 20(5 � 1) � 4 � 84 comparisons. Again, dynamic programming comes out far
superior to explicit enumeration.

Characteristics of Dynamic Programming Applications

We close this section with a discussion of the characteristics of Example 3 that are com-
mon to most applications of dynamic programming.

Characteristic 1

The problem can be divided into stages with a decision required at each stage. In Exam-
ple 3, stage t consisted of those cities where Joe could be at the beginning of day t of his
trip. As we will see, in many dynamic programming problems, the stage is the amount of
time that has elapsed since the beginning of the problem. We note that in some situations,
decisions are not required at every stage (see Section 18.5).

Characteristic 2

Each stage has a number of states associated with it. By a state, we mean the informa-
tion that is needed at any stage to make an optimal decision. In Example 3, the state at
stage t is simply the city where Joe is at the beginning of day t. For example, in stage 3,
the possible states are Kansas City, Omaha, and Dallas. Note that to make the correct de-
cision at any stage, Joe doesn’t need to know how he got to his current location. For ex-
ample, if Joe is in Kansas City, then his remaining decisions don’t depend on how he goes
to Kansas City; his future decisions just depend on the fact that he is now in Kansas City.

Characteristic 3

The decision chosen at any stage describes how the state at the current stage is trans-
formed into the state at the next stage. In Example 3, Joe’s decision at any stage is sim-
ply the next city to visit. This determines the state at the next stage in an obvious fash-
ion. In many problems, however, a decision does not determine the next stage’s state with
certainty; instead, the current decision only determines the probability distribution of the
state at the next stage.

Characteristic 4

Given the current state, the optimal decision for each of the remaining stages must not
depend on previously reached states or previously chosen decisions. This idea is known
as the principle of optimality. In the context of Example 3, the principle of optimality
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reduces to the following: Suppose the shortest path (call it R) from city 1 to city 10 is
known to pass through city i. Then the portion of R that goes from city i to city 10 must
be a shortest path from city i to city 10. If this were not the case, then we could create a
path from city 1 to city 10 that was shorter than R by appending a shortest path from city
i to city 10 to the portion of R leading from city 1 to city i. This would create a path from
city 1 to city 10 that is shorter than R, thereby contradicting the fact that R is a shortest
path from city 1 to city 10. For example, if the shortest path from city 1 to city 10 is
known to pass through city 2, then the shortest path from city 1 to city 10 must include
a shortest path from city 2 to city 10 (2–5–8–10). This follows because any path from city
1 to city 10 that passes through city 2 and does not contain a shortest path from city 2 to
city 10 will have a length of c12 � [something bigger than f2(2)]. Of course, such a path
cannot be a shortest path from city 1 to city 10.

Characteristic 5

If the states for the problem have been classified into one of T stages, there must be a re-
cursion that relates the cost or reward earned during stages t, t � 1, . . . , T to the cost
or reward earned from stages t � 1, t � 2, . . . , T. In essence, the recursion formalizes
the working-backward procedure. In Example 3, our recursion could have been written as

ft(i) � min
j

{cij � ft�1( j)}

where j must be a stage t � 1 city and f5(10) � 0.
We can now describe how to make optimal decisions. Let’s assume that the initial state

during stage 1 is i1. To use the recursion, we begin by finding the optimal decision for
each state associated with the last stage. Then we use the recursion described in charac-
teristic 5 to determine fT�1(�) (along with the optimal decision) for every stage T � 1
state. Then we use the recursion to determine fT�2(�) (along with the optimal decision)
for every stage T � 2 state. We continue in this fashion until we have computed f1(i1) and
the optimal decision when we are in stage 1 and state i1. Then our optimal decision in
stage 1 is chosen from the set of decisions attaining f1(i1). Choosing this decision at stage
1 will lead us to some stage 2 state (call it state i2) at stage 2. Then at stage 2, we choose
any decision attaining f2(i2). We continue in this fashion until a decision has been chosen
for each stage.

In the rest of this chapter, we discuss many applications of dynamic programming. The
presentation will seem easier if the reader attempts to determine how each problem fits
into the network context introduced in Example 3. In the next section, we begin by study-
ing how dynamic programming can be used to solve inventory problems.

P R O B L E M S
Group A

1 Find the shortest path from node 1 to node 10 in the
network shown in Figure 3. Also, find the shortest path from
node 3 to node 10.

2 A sales representative lives in Bloomington and must be
in Indianapolis next Thursday. On each of the days Monday,
Tuesday, and Wednesday, he can sell his wares in Indianapolis,
Bloomington, or Chicago. From past experience, he believes
that he can earn $12 from spending a day in Indianapolis, $16
from spending a day in Bloomington, and $17 from spending
a day in Chicago. Where should he spend the first three days

2

2

7

4

6

3

4

4

5

3

3

3

3

1

3

6

1

24

4
3

31 10

4

5

6

8

9

7

F I G U R E  3



1 8 . 3 An Inventory Problem 969

and nights of the week to maximize his sales income less
travel costs? Travel costs are shown in Table 2.

Group B

3 I must drive from Bloomington to Cleveland. Several
paths are available (see Figure 4). The number on each arc
is the length of time it takes to drive between the two cities.
For example, it takes 3 hours to drive from Bloomington to

Cincinnati. By working backward, determine the shortest
path (in terms of time) from Bloomington to Cleveland.
[Hint: Work backward and don’t worry about stages—only
about states.]

18.3 An Inventory Problem
In this section, we illustrate how dynamic programming can be used to solve an inven-
tory problem with the following characteristics:

1 Time is broken up into periods, the present period being period 1, the next period 2,
and the final period T. At the beginning of period 1, the demand during each period is
known.

2 At the beginning of each period, the firm must determine how many units should be
produced. Production capacity during each period is limited.

3 Each period’s demand must be met on time from inventory or current production. Dur-
ing any period in which production takes place, a fixed cost of production as well as a
variable per-unit cost is incurred.

4 The firm has limited storage capacity. This is reflected by a limit on end-of-period in-
ventory. A per-unit holding cost is incurred on each period’s ending inventory.

5 The firm’s goal is to minimize the total cost of meeting on time the demands for pe-
riods 1, 2, . . . , T.

In this model, the firm’s inventory position is reviewed at the end of each period (say,
at the end of each month), and then the production decision is made. Such a model is
called a periodic review model. This model is in contrast to the continuous review mod-
els in which the firm knows its inventory position at all times and may place an order or
begin production at any time.

If we exclude the setup cost for producing any units, the inventory problem just de-
scribed is similar to the Sailco inventory problem that we solved by linear programming
in Section 3.10. Here, we illustrate how dynamic programming can be used to determine
a production schedule that minimizes the total cost incurred in an inventory problem that
meets the preceding description.

TA B L E  2
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A company knows that the demand for its product during each of the next four months
will be as follows: month 1, 1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units.
At the beginning of each month, the company must determine how many units should be
produced during the current month. During a month in which any units are produced, a
setup cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit pro-
duced. At the end of each month, a holding cost of 50¢ per unit on hand is incurred. Ca-
pacity limitations allow a maximum of 5 units to be produced during each month. The
size of the company’s warehouse restricts the ending inventory for each month to 4 units
at most. The company wants to determine a production schedule that will meet all de-
mands on time and will minimize the sum of production and holding costs during the four
months. Assume that 0 units are on hand at the beginning of the first month.

Solution Recall from Section 3.10 that we can ensure that all demands are met on time by re-
stricting each month’s ending inventory to be nonnegative. To use dynamic programming
to solve this problem, we need to identify the appropriate state, stage, and decision. The
stage should be defined so that when one stage remains, the problem will be trivial to
solve. If we are at the beginning of month 4, then the firm would meet demand at mini-
mum cost by simply producing just enough units to ensure that (month 4 production) �
(month 3 ending inventory) � (month 4 demand). Thus, when one month remains, the
firm’s problem is easy to solve. Hence, we let time represent the stage. In most dynamic
programming problems, the stage has something to do with time.

At each stage (or month), the company must decide how many units to produce. To
make this decision, the company need only know the inventory level at the beginning of
the current month (or the end of the previous month). Therefore, we let the state at any
stage be the beginning inventory level.

Before writing a recursive relation that can be used to “build up” the optimal produc-
tion schedule, we must define ft(i) to be the minimum cost of meeting demands for months
t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We define c(x) to be the
cost of producing x units during a period. Then c(0) � 0, and for x � 0, c(x) � 3 � x.
Because of the limited storage capacity and the fact that all demand must be met on time,
the possible states during each period are 0, 1, 2, 3, and 4. Thus, we begin by determin-
ing f4(0), f4(1), f4(2), f4(3), and f4(4). Then we use this information to determine f3(0),
f3(1), f3(2), f3(3), and f3(4). Then we determine f2(0), f2(1), f2(2), f2(3), and f2(4). Finally,
we determine f1(0). Then we determine an optimal production level for each month. We
define xt(i) to be a production level during month t that minimizes the total cost during
months t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We now begin
to work backward.

Month 4 Computations

During month 4, the firm will produce just enough units to ensure that the month 4 de-
mand of 4 units is met. This yields

f4(0) � cost of producing 4 � 0 units � c(4) � 3 � 4 � $7 and x4(0) � 4 � 0 � 4

f4(1) � cost of producing 4 � 1 units � c(3) � 3 � 3 � $6 and x4(1) � 4 � 1 � 3

f4(2) � cost of producing 4 � 2 units � c(2) � 3 � 2 � $5 and x4(2) � 4 � 2 � 2

f4(3) � cost of producing 4 � 3 units � c(1) � 3 � 1 � $4 and x4(3) � 4 � 3 � 1

f4(4) � cost of producing 4 � 4 units � c(0) � $0 and x4(4) � 4 � 4 � 0

InventoryE X A M P L E  4
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Month 3 Computations

How can we now determine f3(i) for i � 0, 1, 2, 3, 4? The cost f3(i) is the minimum cost
incurred during months 3 and 4 if the inventory at the beginning of month 3 is i. For each
possible production level x during month 3, the total cost during months 3 and 4 is

(�
1
2

�)(i � x � 2) � c(x) � f4(i � x � 2) (1)

This follows because if x units are produced during month 3, the ending inventory for
month 3 will be i � x � 2. Then the month 3 holding cost will be (�

1
2

�)(i � x � 2), and
the month 3 production cost will be c(x). Then we enter month 4 with i � x � 2 units on
hand. Since we proceed optimally from this point onward (remember the principle of op-
timality), the cost for month 4 will be f4(i � x � 2). We want to choose the month 3 pro-
duction level to minimize (1), so we write

f3(i) � min
x

{(�
1
2

�)(i � x � 2) � c(x) � f4(i � x � 2)} (2)

In (2), x must be a member of {0, 1, 2, 3, 4, 5}, and x must satisfy 4 � i � x � 2 � 0. This
reflects the fact that the current month’s demand must be met (i � x � 2 � 0), and ending
inventory cannot exceed the capacity of 4(i � x � 2 	 4). Recall that x3(i) is any value of
x attaining f3(i). The computations for f3(0), f3(1), f3(2), f3(3), and f3(4) are given in Table 3.

Month 2 Computations

We can now determine f2(i), the minimum cost incurred during months 2, 3, and 4 given
that at the beginning of month 2, the on-hand inventory is i units. Suppose that month 2
production � x. Because month 2 demand is 3 units, a holding cost of (�

1
2

�)(i � x � 3) is

TA B L E  3
Computations for f3(i )

Total Cost f3(i )
i x (�

1
2

�)(i � x � 2) �c (x) f4(i � x � 2) Months 3, 4 x3(i )

0 2 0 � 5 � 5 7 5 � 7 � 12* f3(0) � 12
0 3 ��

1
2

� � 6 � �
1
2
3
� 6 �

1
2
3
� � 6 � �

2
2
5
� x3(0) � 2

0 4 1 � 7 � 8 5 8 � 5 � 13
0 5 �

3
2

� � 8 � �
1
2
9
� 4 �

1
2
9
� � 4 � �

2
2
7
�

1 1 0 � 4 � 4 7 4 � 7 � 11 f3(1) � 10
1 2 ��

1
2

� � 5 � �
1
2
1
� 6 �

1
2
1
� � 6 � �

2
2
3
� x3(1) � 5

1 3 1 � 6 � 7 5 7 � 5 � 12
1 4 �

3
2

� � 7 � �
1
2
7
� 4 �

1
2
7
� � 4 � �

2
2
5
�

1 5 2 � 8 � 10 0 10 � 0 � 10*
2 0 0 � 0 � 0 7 0 � 7 � 7* f3(2) � 7
2 1 �

1
2

� � 4 � �
9
2

� 6 �
9
2

� � 6 � �
2
2
1
� x3(2) � 0

2 2 1 � 5 � 6 5 6 � 5 � 11
2 3 �

3
2

� � 6 � �
1
2
5
� 4 �

1
2
5
� � 4 � �

2
2
3
�

2 4 2 � 7 � 9 0 9 � 0 � 9
3 0 �

1
2

� � 0 � �
1
2

� 6 �
1
2

� � 6 � �
1
2
3
�* f3(3) � �

1
2
3
�

3 1 1 � 4 � 5 5 5 � 5 � 10 x3(3) � 0
3 2 �

3
2

� � 5 � �
1
2
3
� 4 �

1
2
3
� � 4 � �

2
2
1
�

3 3 2 � 6 � 8 0 8 � 0 � 8
4 0 1 � 0 � 1 5 1 � 5 � 6* f3(4) � 6
4 1 �

3
2

� � 4 � �
1
2
1
� 4 �

1
2
1
� � 4 � �

1
2
9
� x3(4) � 0

4 2 2 � 5 � 7 0 7 � 0 � 7
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incurred at the end of month 2. Thus, the total cost incurred during month 2 is (�
1
2

�)(i �
x � 3) � c(x). During months 3 and 4, we follow an optimal policy. Since month 3 be-
gins with an inventory of i � x � 3, the cost incurred during months 3 and 4 is f3(i �
x � 3). In analogy to (2), we now write

f2(i) � min
x

{(�
1
2

�)(i � x � 3) � c(x) � f3(i � x � 3)} (3)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must also satisfy 0 	 i � x � 3 	
4. The computations for f2(0), f2(1), f2(2), f2(3), and f2(4) are given in Table 4.

Month 1 Computations

The reader should now be able to show that the f1(i)’s can be determined via the follow-
ing recursive relation:

f1(i) � min
x

{(�
1
2

�)(i � x � 1) � c(x) � f2(i � x � 1)} (4)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must satisfy 0 	 i � x � 1 	 4.
Since the inventory at the beginning of month 1 is 0 units, we actually need only deter-
mine f1(0) and x1(0). To give the reader more practice, however, the computations for
f1(1), f1(2), f1(3), and f1(4) are given in Table 5.

Determination of the Optimal Production Schedule

We can now determine a production schedule that minimizes the total cost of meeting the
demand for all four months on time. Since our initial inventory is 0 units, the minimum
cost for the four months will be f1(0) � $20. To attain f1(0), we must produce x1(0) � 1

TA B L E  4
Computations for f2(i )

Total Cost f2(i )
i x (�

1
2

�)(i � x � 3) �c (x) f3(i � x � 3) Months 2–4 x2(i )

0 3 0 � 6 � 6 12 6 � 12 � 18 f2(0) � 16
0 4 ��

1
2

� � 7 � �
1
2
5
� 10 ��

1
2
5
� � 10 � �

3
2
5
� x2(0) � 5

0 5 1 � 8 � 9 17 9 � 7 � 16*
1 2 0 � 5 � 5 12 5 � 12 � 17 f2(1) � 15
1 3 ��

1
2

� � 6 � �
1
2
3
� 10 �

1
2
3
� � 10 � �

3
2
3
� x2(1) � 4

1 4 1 � 7 � 8 17 8 � 7 � 15*
1 5 �

3
2

� � 8 � �
1
2
9
� �

1
2
3
� �

1
2
9
� � �

1
2
3
� � 16

2 1 0 � 4 � 4 12 4 � 12 � 16 f2(2) � 14
2 2 ��

1
2

� � 5 � �
1
2
1
� 10 �

1
2
1
� � 10 � �

3
2
1
�* x2(2) � 3

2 3 1 � 6 � 7 17 7 � 7 � 14*
2 4 �

3
2

� � 7 � �
1
2
7
� �

1
2
3
� �

1
2
7
� � �

1
2
3
� � 15

2 5 2 � 8 � 10 16 10� 6 � 16
3 0 0 � 0 � 0 12 0 � 12 � 12* f2(3) � 12
3 1 ��

1
2

� � 4 � �
9
2

� 10 �
9
2

� � 10 � �
2
2
9
� x2(3) � 0

3 2 1 � 5 � 6 17 6 � 7 � 13
3 3 �

3
2

� � 6 � �
1
2
5
� �

1
2
3
� �

1
2
5
� � �

1
2
3
� � 14

3 4 2 � 7 � 9 16 9 � 6 � 15
4 0 ��

1
2

� � 0 � ��
1
2

� 10 ���
1
2

� � 10 � �
2
2
1
�* f2(4) � �

2
2
1
�

4 1 1 � 4 � 5 17 5 � 7 � 12 x2(4) � 0
4 2 �

3
2

� � 5 � �
1
2
3
� �

1
2
3
� �

1
2
3
� � �

1
2
3
� � 13

4 3 2 � 6 � 8 6 8 � 6 � 14
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unit during month 1. Then the inventory at the beginning of month 2 will be 0 � 1 �
1 � 0. Thus, in month 2, we should produce x2(0) � 5 units. Then at the beginning of
month 3, our beginning inventory will be 0 � 5 � 3 � 2. Hence, during month 3, we
need to produce x3(2) � 0 units. Then month 4 will begin with 2 � 2 � 0 � 0 units on
hand. Thus, x4(0) � 4 units should be produced during month 4. In summary, the opti-
mal production schedule incurs a total cost of $20 and produces 1 unit during month 1,
5 units during month 2, 0 units during month 3, and 4 units during month 4.

Note that finding the solution to Example 4 is equivalent to finding the shortest route join-
ing the node (1, 0) to the node (5, 0) in Figure 5. Each node in Figure 5 corresponds to
a state, and each column of nodes corresponds to all the possible states associated with a
given stage. For example, if we are at node (2, 3), then we are at the beginning of month
2, and the inventory at the beginning of month 2 is 3 units. Each arc in the network rep-
resents the way in which a decision (how much to produce during the current month)
transforms the current state into next month’s state. For example, the arc joining nodes (1,
0) and (2, 2) (call it arc 1) corresponds to producing 3 units during month 1. To see this,
note that if 3 units are produced during month 1, then we begin month 2 with 0 � 3 �
1 � 2 units. The length of each arc is simply the sum of production and inventory costs
during the current period, given the current state and the decision associated with the cho-
sen arc. For example, the cost associated with arc 1 would be 6 � (�

1
2

�)2 � 7. Note that
some nodes in adjacent stages are not joined by an arc. For example, node (2, 4) is not
joined to node (3, 0). The reason for this is that if we begin month 2 with 4 units, then at
the beginning of month 3, we will have at least 4 � 3 � 1 unit on hand. Also note that
we have drawn arcs joining all month 4 states to the node (5, 0), since having a positive
inventory at the end of month 4 would clearly be suboptimal.

TA B L E  5
Computations for f1(i )

f1(i )
i x (�

1
2

�)(i � x � 1) �c (x) f2(i � x � 1) Total Cost x1(i )

0 1 0 � 4 � 4 16 4 � 16 � 20* f1(0) � 20
0 2 ��

1
2

� � 5 � �
1
2
1
� 15 �

1
2
1
� � 15 � �

4
2
1
� x1(0) � 1

0 3 1 � 6 � 7 14 7 � 14 � 21
0 4 �

3
2

� � 7 � �
1
2
7
� 12 �

1
2
7
� � 12 � �

4
2
1
�

0 5 2 � 8 � 10 �
2
2
1
� 10� �

2
2
1
� � �

4
2
1
�

1 0 0 � 0 � 0 16 0 � 16 � 16* f1(1) � 16
1 1 ��

1
2

� � 4 � �
9
2

� 15 �
9
2

� � 15 � �
3
2
9
� x1(1) � 0

1 2 1 � 5 � 6 14 20
1 3 �

3
2

� � 6 � �
1
2
5
� 12 �

1
2
5
� � 12 � �

3
2
9
�

1 4 2 � 7 � 9 �
2
2
1
� 9 � �

2
2
1
� � �

3
2
9
�

2 0 ��
1
2

� � 0 � ��
1
2

� 15 ��
1
2

� � 15 � �
3
2
1
�* f1(2) � �

3
2
1
�

2 1 1 � 4 � 5 14 5 � 14 � 19 x1(2) � 0
2 2 �

3
2

� � 5 � �
1
2
3
� 12 �

1
2
3
� � 12 � �

3
2
7
�

2 3 2 � 6 � 8 �
2
2
1
� 8 � �

2
2
1
� � �

3
2
7
�

3 0 1 � 0 � 1 14 1 � 14 � 15* f1(3) � 15
3 1 �

3
2

� � 4 � �
1
2
1
� 12 �

1
2
1
� � 12 � �

3
2
5
� x1(3) � 0

3 2 2 � 5 � 7 �
2
2
1
� 7 � �

2
2
1
� � �

3
2
5
�

4 0 �
3
2

� � 0 � �
3
2

� 12 �
3
2

� � 12 � �
2
2
7
�* f1(4) � �

2
2
7
�

4 1 2 � 4 � 6 �
2
2
1
� 6 � �

2
2
1
� � �

3
2
3
� x1(4) � 0
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Returning to Example 4, the minimum-cost production schedule corresponds to the
shortest path joining (1, 0) and (5, 0). As we have already seen, this would be the path
corresponding to production levels of 1, 5, 0, and 4. In Figure 5, this would correspond
to the path beginning at (1, 0), then going to (2, 0 � 1 � 1) � (2, 0), then to (3, 0 �
5 � 3) � (3, 2), then to (4, 2 � 0 � 2) � (4, 0), and finally to (5, 0 � 4 � 4) � (5, 0).
Thus, our optimal production schedule corresponds to the path (1, 0)–(2, 0)–(3, 2)–(4,
0)–(5, 0) in Figure 5.

P R O B L E M S
Group A

1, 0

1, 1

1, 2

1, 3

1, 4

Month 1 Month 2 Month 3 Month 4

Month 5

2, 0

2, 1

2, 2

2, 3

2, 4

3, 0

3, 1

3, 2

3, 3

3, 4

4, 0

4, 1

4, 2 5, 0

4, 3

4, 4
F I G U R E  5

Network Representation
of Inventory Example

1 In Example 4, determine the optimal production
schedule if the initial inventory is 3 units.

2 An electronics firm has a contract to deliver the
following number of radios during the next three months;
month 1, 200 radios; month 2, 300 radios; month 3, 300
radios. For each radio produced during months 1 and 2, a
$10 variable cost is incurred; for each radio produced during
month 3, a $12 variable cost is incurred. The inventory cost
is $1.50 for each radio in stock at the end of a month. The
cost of setting up for production during a month is $250.

Radios made during a month may be used to meet demand
for that month or any future month. Assume that production
during each month must be a multiple of 100. Given that
the initial inventory level is 0 units, use dynamic
programming to determine an optimal production schedule.

3 In Figure 5, determine the production level and cost
associated with each of the following arcs:

a (2, 3)–(3, 1)
b (4, 2)–(5, 0)

18.4 Resource-Allocation Problems
Resource-allocation problems, in which limited resources must be allocated among sev-
eral activities, are often solved by dynamic programming. Recall that we have solved such
problems by linear programming (for instance, the Giapetto problem). To use linear pro-
gramming to do resource allocation, three assumptions must be made:

Assumption 1 The amount of a resource assigned to an activity may be any nonnegative
number.
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