The Activated Complex in Chemical Reactions

Henry Eyring

Citation: The Journal of Chemical Physics 3, 107 (1935); doi: 10.1063/1.1749604
View online: http://dx.doi.org/10.1063/1.1749604
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/3/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Quasistatistical Complexes in Chemical Reactions
J. Chem. Phys. 56, 5786 (1972); 10.1063/1.1677117

Chemical-Reaction Cross Sections, Quasiequilibrium, and Generalized Activated Complexes

Activated Complexes of Fast Bimolecular Reactions

Collision and Activated Complex Theories for Bimolecular Reactions

Statistical Mechanical Treatment of the Activated Complex in Chemical Reactions
The calculation of absolute reaction rates is formulated in terms of quantities which are available from the potential surfaces which can be constructed at the present time. The probability of the activated state is calculated using ordinary statistical mechanics. This probability multiplied by the rate of decomposition gives the specific rate of reaction. The occurrence of quantized vibrations in the activated complex, in degrees of freedom which are unquantized in the original molecules, leads to relative reaction rates for isotopes quite different from the rates predicted using simple kinetic theory. The necessary conditions for the general statistical treatment to reduce to the usual kinetic treatment are given.

INTRODUCTION

The customary procedure for calculating bimolecular reaction rates has been to estimate the number of collisions between reacting molecules by using a cross-sectional area taken from measurements on momentum transfer. Such a cross section bears no very clear relationship to the area within which two molecules must fall in order to permit exchange of partners, i.e., to transfer mass. The violence of the collisions is of different orders of magnitude for one thing, and it is quite clear that many collisions which might result in momentum transfer are not oriented properly to permit exchange of atoms. This last difficulty is ordinarily met by introducing an empirical steric or orientation factor to take care of whatever discrepancy may arise between the observed and assumed collision area. This factor is often between 1 and 10^{-1} but may be as small as 10^{-8}.\(^1\) We propose here to obtain explicit expressions for the reaction rates.

The ideas underlying the present calculations are the following ones. The forces between atoms are due to the motion and distribution of electrons and must be calculated, therefore, using quantum mechanics. However, after this is done the nuclei themselves can be assumed to move under the influence of these forces according to classical mechanics. It must be possible, therefore, to calculate the reaction rates by the methods of statistical mechanics (or kinetic theory), if one assumes the aforementioned forces to be known. This is what is done in the present paper using a modification of the schemes developed by Herzfeld,\(^2\) Tolman\(^3\) and Fowler\(^4\) among others and more recently applied in a very interesting way to the ortho-para hydrogen conversion by Pelzer and Wigner.\(^5\)

Cases occur when classical mechanics does not apply to the motion of the nuclei. Zero point energy may be present for some vibrations, and it will be necessary to deal with quantized vibrations in a semi-classical way. Tunneling may occasionally play some role in the motion. In other cases, probably also of very rare occurrence, there may be jumps from one energy level to another. The latter factors may also change the results calculated by neglecting them by orders of magnitude as, e.g., in the case of N\(_2\)O.\(^6\) We are not concerned here with reactions in which the last two effects are important.

We now consider in more detail the nature of the surfaces and the motion which corresponds to a reaction. A group of atoms may of course arrange themselves in an infinitely large number of ways. If the energy of such a system of atoms for the lowest quantum state of the electrons is plotted against the various distances between the nuclei, we obtain the potential surface which governs (except in the aforementioned cases) the motion of the nuclei.

Now a system moving on this surface will have kinetic energy which may be quantized for the different degrees of freedom in a variety of ways.\(^3\) F. K. Herzfeld, *Kinetische Theorie der Wärme* (Müller-Pouillet's Lehrbuch der Physik) 1925.
of ways, consistent with the particular energy and the particular position on the surface. Low places in the potential surfaces correspond to compounds. If a particular low lying region is separated from all other low places by regions higher than about 23 kilocalories, the compound will be stable at and below room temperature. The higher the lowest pass the higher is the temperature at which the compound is still stable. A reaction corresponds to a system passing from one low region to another. In thermal reactions the Boltzmann factor makes it certain that the reaction will proceed by way of the lowest pass. The activated state is the highest point along this lowest pass. Before considering the activated state further we discuss the general problem of constructing our partition functions for a given surface.

Formulation of Partition Functions

We here simply sketch the procedure for the gas phase and indicate where the modifications for reactions in solution will come. If a system of atoms is represented by a point on a potential surface such that for the motion in every direction the potential increases or remains constant, we may apply the well-known method of small vibrations to obtain the normal coordinates. If a system will show translational, vibrational and rotational degrees of freedom. The weighted number of states associated with a degree of translation are

\[\frac{1}{h} \int_{-\infty}^{\infty} dq_i \int_{-\infty}^{\infty} \exp \left(-\frac{p_i^2}{2m_i kT} \right) dp_i = \frac{(2\pi m_i kT)^{1/2}}{h} \]

where \(q_i, p_i \) and \(m_i \) are the generalized length, momentum and mass for this degree of freedom, respectively. For a solution or highly compressed gas the integration over the length \(l_i \) would involve a potential function in an important way. Also the reacting system would now include in an essential way the degrees of freedom of a certain number of the solvent molecules. If we set the length \(l_i = 1 \) we have the number of unit cells per cm of length, a quantity frequently used in what follows. The other universal constants require no definition. Similarly for a vibrational degree of freedom we obtain for the weighted number of states using classical theory

\[\frac{1}{h} \int_{-\infty}^{\infty} \exp \left(-\frac{p_i^2}{2m_i kT} \right) dp_i \int_{-\infty}^{\infty} \exp \left(-\frac{f_i q_i^2}{2kT} \right) dq_i = \frac{kT}{h v_i} \]

where \(v_i = (1/2\pi)(f_i/m_i)^{1/2} \).

Here \(f_i \) and \(v_i \) are the force constant and frequency, respectively. However, summing over the quantized states, we obtain the familiar quantum theoretical expression \((1 - \exp (-hv_i/kT))^{-1} \) for the weighted number of states for the harmonic oscillator. For \(hv_i \ll kT \) of course \((1 - \exp (-hv_i/kT))^{-1} = kT/hv_i \). The weighted sum of states for the two degrees of rotation of a linear molecule is

\[\sum_{j=0}^{\infty} (2j+1) \exp \left(-\frac{j(j+1)h^2}{8\pi^2 I kT} \right) \]

Here \(I \) is the moment of inertia. Now there are cases for which the position of the activated state on the potential surface depends on the quantum number \(j \). Certain cases of this type will be treated in another place. If the critical configuration does not depend in an important way on \(j \) and if \(j(j+1)h^2/(8\pi^2 I kT) \ll 1 \), we can in the well-known way substitute for the summation the integral

\[\int_{0}^{\infty} 2(j+\frac{1}{2}) \exp \left(-\frac{(j+\frac{1}{2})h^2}{8\pi^2 I kT} \right) dj = \frac{8\pi^2 I kT}{h^2} \]

For a non-linear molecule we can write for the weighted sum of states the expression \(8\pi^2 \times (ABC)^4/(8\pi^2 I^4 kT)^{1/2} \) (If the moments of inertia are small we should sum over the energy levels for a symmetric or asymmetric top.) The expression \(2(2j+1) \exp (-j(j+1)h^2/(8\pi^2 \times (ABC)^4 kT)) \) is satisfactory if the moments of inertia differ only a little and the corresponding integral

\[\int_{0}^{\infty} 4(j+\frac{1}{2}) \exp \left(-\frac{(j+\frac{1}{2})h^2}{(8\pi^2 (ABC)^4 kT)} \right) dj \]

yields the classical weighted sum given above.

We now suppose that we have a great number of systems in thermal equilibrium and want to know the relative probability of any system.
being at points 1 and 2 on a potential energy surface. We assume points 1 and 2 are of such a kind that we know the corresponding normal coordinates and that the energy of point 2 is greater by E_0 than that of point 1. The ratio of the corresponding weighted number of states of points 2 to 1 (which is the relative probability) is obtained by multiplying $\exp \left(-E_0/kT \right)$ into the ratio of the product of the weighted sum for each normal mode for point 2 to the corresponding product for point 1. This very brief discussion of the equilibrium constant is sufficient for our purposes. For a rigorous deduction one may consult the work of Fowler previously referred to. The next conception we will require is the rate at which the systems at point 2 are moving along a particular normal coordinate.

In our considerations point 2 will in general correspond to the activated state which we now consider in more detail. We call a system at the activated point an activated complex.

The Activated Complex

The activated state is because of its definition always a saddle point with positive curvature in all degrees of freedom except the one which corresponds to crossing the barrier for which it is of course negative. Further, the barriers are so flat near the top that tunneling may be neglected without appreciable error. A configuration of atoms corresponding to the activated state thus has all the properties of a stable compound except in the normal mode corresponding to decomposition and this mode because of the small curvature can be treated statistically as a translational degree of freedom. Thus a non-linear activated complex with n atoms ($n=3$) has three regular translational degrees of freedom corresponding to motion of the center of mass in addition to the one corresponding to passage over the top of the barrier. It also has three rotational degrees of freedom for the molecule as a whole, and the remaining $(3n-7)$ degrees of freedom correspond to internal rotations or vibrations. A linear molecule differs from this in that one of the degrees of freedom which was a rotation is instead a bending vibration. Now the calculation of the concentration of activated complexes is a straightforward statistical problem, given the moments of inertia of the complex and the vibration frequencies. This information is given with sufficient accuracy, even by our very approximate potential surfaces, to give good values for the partition functions.

The procedure for calculating the specific rate is the following: One first calculates the concentration of activated complexes per unit length and with momentum p lying between p and $p+dp$, both these quantities taken for the degree of freedom corresponding to decomposition. This is then multiplied by the associated velocity $p/m*$ and summed for all values of momenta which correspond to passing over the barrier in the forward direction, i.e., for $p=0$ to ∞. We now formulate the particular expressions for the various cases.

Three Atom Reactions

Consider the reaction

$$A + BC \rightarrow A - B - C \rightarrow AB + C,$$

where the activated complex $A - B - C$ is linear. We write for the specific reaction rate constant

$$k_1 = \frac{\left\{ \frac{\exp \left(-\frac{h\nu_s^*}{kT} \right)}{h} \prod_{i=1}^{3} \left(1 - \exp \left(\frac{-h\nu_i}{kT} \right) \right) \right\} \frac{1}{\sigma h^2} \exp \left(\frac{-E_0^*}{kT} \right)}{\frac{g_{a_{1,a}^*}}{h^2} \left(\frac{2\pi m_s kT}{h^2} \right)^{3/2} \left(\frac{2\pi m_s kT}{h^2} \right)^{1/2} \frac{1}{(1 - \exp \left(\frac{-h\nu_1^*}{kT} \right))} \frac{h^2}{\sigma \hbar^2} \prod_{i=1}^{3} \left(1 - \exp \left(\frac{-h\nu_i}{kT} \right) \right)}{\frac{g_{a_{1,a}^*}}{h^2} \left(\frac{m_1}{m_2} \right)^{3/2} \left(\frac{m_1}{m_2} \right)^{1/2} \frac{h^2}{\sigma \hbar^2} \prod_{i=1}^{3} \left(1 - \exp \left(\frac{-h\nu_i}{kT} \right) \right)}}{I_3 \sigma_2 \left(\frac{2\pi}{kT} \right)^{3/2} \left(\frac{2\pi}{kT} \right)^{1/2} \frac{h^2}{\sigma \hbar^2} \prod_{i=1}^{3} \left(1 - \exp \left(\frac{-h\nu_i}{kT} \right) \right)}}. \tag{2}$$
The subscript 1 refers to atom A, 2 to BC and 3 to the activated complex. E_o is the difference in energy between the initial substances and the activated state at the absolute zero. The quantities m_j, I_j, a_j are the mass, moment of inertia and symmetry number respectively of the particle j. The three frequencies v_i^* (for $i = 1, 2$ and 3) are for the activated complex and v_2 is the vibration frequency of AB. The letter g_a and g_n are the products of weights arising from electronic states and nuclear spin for the activated and ground state respectively. Frequently $g_a = g_n$ and i_a and i_n need only be considered for reactions in which there is a change in ratio of ortho and para forms. m^* and p are the reduced mass and average momentum along the normal coordinate corresponding to decomposition. The quantity in Eq. (2) which multiplies p/m^* (the average velocity of activated complex along the normal coordinate corresponding to passing over the barrier) is of course the concentration of activated complex per cm of length normal to the barrier when there is unit concentration of reactants per cc. Now

$$\frac{p}{m^*} = \left(\int_0^\infty \exp \left(-\frac{p^2}{2m^*kT} \right) \frac{p}{m^*} dp \right) / \int_0^\infty \exp \left(-\frac{p^2}{2m^*kT} \right) dp = kT/(2\pi m^*kT)^{\frac{1}{2}}. $$

Thus we see that the terms for the activated complex associated with the normal coordinate along which decomposition occurs give simply $(2\pi m^*kT)^{\frac{1}{2}}p/m^* = kT/h$. This factor will of course come in the same way for every type of reaction.

For some reactions it will happen that the same activated complex may cross the barrier and return without decomposing. This fact reduces the actual reaction rate. It is taken care of by the factor c which is the reciprocal of the average numbers of crossings required for each complex which reacts. It will generally be about unity. There are methods available for estimating the factor c. The other symbols appearing in Eq. (2) are well known and if we introduce our constants in grams cm sec. units, k_1 is given in cc molecules$^{-1}$ sec.$^{-1}$ If we want k_1 in cc moles$^{-1}$ sec.$^{-1}$ we must multiply the k of Eq. (2) by Avogadro's number N.

A form frequently used for writing experimental specific reaction rates is

$$k_2 = BT^4 \exp \left(-E/kT \right) = BT^4 \exp \left(-(Td \log k_2/dT - \frac{1}{2}) \right).$$

The activation energy E in (3) is written as $kTd \log k_2/dT - \frac{1}{2}kT$ as this is the way it is calculated from the temperature increment. Putting (2) in the same form as (3) we find for comparison

$$E = E_o + \sum_{i=1}^{3} (hv_i^*/\exp (hv_i^*/kT) - 1) - (hv_2^*/\exp (hv_2^*/kT) - 1) - kT,$$

and

$$BT^4 = g_{s,a} g_{s,n} \left(\frac{m_3}{m_1m_2} \right)^{\frac{1}{2}} I_{s,a} I_{s,n} \left(\frac{h^2}{2\pi(2\pi)^{\frac{3}{2}}(kT)^{\frac{3}{2}}} \right)^{\frac{1}{2}} \prod_{i=1}^{3} \left(1 - \exp \left(-hv_i^*/kT \right) \right) \left\{ \sum_{i=1}^{3} \frac{(hv_i^*/kT)(\exp (hv_i^*/kT) - 1)^{-1} - hv_i^*/kT \times (\exp (hv_i^*/kT) - 1)^{-1} - 1}{(\exp (hv_i^*/kT) - 1)^{-1} - 1} \right\}.$$

In (5) and in the preceding expressions the masses m_i refer to the masses of a single atom or molecule. If the masses are taken in atomic weight units and written with primes we get:
ACTIVATED COMPLEX IN CHEMICAL REACTIONS

\[BT^1 = 1.41 \times 10^{12} (3000/T)^4 \left(\frac{g_i}{g_a} \right)^4 \left(m_1^*/m_2^* \right)^4 \left(I_3 I_9 \right) (1 - \exp (-\frac{hv_s}{kT})) \times \prod_{i=1}^{2} \left(1 - \exp \left(-\frac{hv_i}{kT} \right) \right)^{-1} \exp \left\{ \sum_{i=1}^{2} \left(\frac{hv_i}{kT} \right) \left(\exp \left(\frac{hv_i}{kT} \right) - 1 \right)^{-1} \right\} \text{cc mole}^{-1} \text{sec}^{-1} \text{ units. (5') }\]

For many simple reactions all the terms in \(BT^1 \) except \(1.41 \times 10^{12} \) are of the order of magnitude of 1 so that this factor multiplied by the activation energy term gives approximately the rate of the reactions and actually agrees to this approximation with the known experimental values. We have an exact theoretical collision diameter for reaction rates which replaces the rough kinetic theory value and provides in addition a theory for predicting and explaining divergences.

The inverse dependence on temperature of \(B \) is to be noted. This will be the case for molecules for which there are two more fairly stiff quantized vibrations in the activated complex than in the un-activated particles. Partition functions for fairly stiff vibrations depend only slightly on temperature.

Re-use of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions.
in (2) are replaced by the quantity

\[8\pi^2(8\pi^2A^*B^*C^*)/(kT)^5/2 \left(\prod_{i=1}^{3n-7} \left(1 - \exp \left(-\frac{\hbar \nu_i}{kT} \right) \right) \right)^{-1}. \]

In this case we see a vibrational degree of freedom has become a rotational one. The letters \(A^*B^*C^* \) now correspond to the principal moments of inertia of the activated complex. The calculation of the reaction rate and of \(B \) and \(E \) then proceeds exactly as before.

Four Atoms

Consider the reaction:

\[A + B + C \rightarrow A^* + B + C \]

\[k_8 = c_8 \sigma_8 \frac{2\pi \rho / \hbar}{(2\pi \rho \hbar)^5}(8\pi^2A_2B_2C_2)/(kT)^5/2 \left(\prod_{i=1}^{3n-7} \left(1 - \exp \left(-\frac{\hbar \nu_i}{kT} \right) \right) \right)^{-1}. \]

The subscripts 1, 2 and 3 refer to the species \(A - B, C - D \) and the activated complex respectively. Primed symbols as before mean that atomic weights are to be used as masses, and atomic weights \(\times (\text{Angstroms})^3 \) are the units in which moments of inertia are to be given. The significance of the other symbols will be clear from the definitions in connection with Eq. (2).

Since all the quantities in (7) are of the order of unity for most reactions except the numerical factor and \(e^{-E_0/kT} \) we see again why the kinetic theory picture agrees approximately.

Clearly, for any bimolecular reaction, we can immediately write down the expression corresponding to \(k_8 \). If \(A, B, C \) and \(D \) instead of being atoms are radicals there will simply be additional vibration and internal rotation terms with the expression for moments of inertia of the initial substances in the appropriate cases, taking the form for non-linear molecules. The same reasons for approximate agreement with kinetic theory will remain. Now the activated complex for the type of reactions we are considering is the same for the forward or the reverse reaction. So that in calculating the specific reaction rate constant \(k \) for a unimolecular reaction which is bimolecular in the reverse direction we simply modify the denominator of the reverse reaction constant to correspond to the new initial reactants.

Unimolecular Reactions

Suppose we have a non-linear molecule of \(n \) atoms decomposing unimolecularly. We then write, cancelling out factors common to the initial and activated states:

\[k_8 = c^* \sigma^*/\sigma (A^*B^*C^*/ABC)^{2n-7} \left(\prod_{i=1}^{3n-5} \left(1 - \exp \left(-\frac{\hbar \nu_i^*}{kT} \right) \right) \right)^{-1} \left(\prod_{i=1}^{3n-5} \left(1 - \exp \left(-\frac{\hbar \nu_i}{kT} \right) \right) \right)^{-1} \]

\[\times \left(\frac{kT}{\hbar} \right) \exp \left(-\frac{E_0}{kT} \right). \]
Quantities referring to the activated state in (8) are starred. Now in the particular case where \(h\nu_i \ll kT \), i.e., all vibrational degrees of freedom approach a classical behavior we have \((1-\exp (\frac{-h\nu_i}{kT}))^{-1} = \frac{kT}{h\nu_i} \) and (7) takes the form:

\[
k_i = c^* (\sigma/\sigma^*) \prod_{i=1}^{n-6} (\nu_i^*)^{-1} (A^*B^*C^*) (ABC)^{-1} \exp (-E_0/kT).
\]

(9)

\(c^* \) has the same meaning as the \(c \) defined in connection with (2). We of course come to this same result (9) directly if we integrate the appropriate classical expressions for vibration over phase space. Thus for each vibrational degree of freedom:

\[
\frac{1}{h} \int_{-\infty}^{\infty} \exp \left(-\frac{p^2}{2m_i kT}\right) dp_i \int_{-\infty}^{\infty} \exp \left(-\frac{f_i q_i^2}{2kT}\right) dq_i = kT/h\nu_i
\]

if we use the relationship \(\nu_i = \frac{1}{2} \pi (f_i/m_i)^{1/2} \). In using (8) it must be remembered that for certain molecules some of the degrees of freedom treated as vibrations can better be treated as internal rotations. In any particular case there is no particular difficulty in doing this. Eq. (9) is sufficiently near to that found for unimolecular reactions at high pressures that there seems no doubt of the wide applicability of both (8) and (9). A formula very similar to (9) was obtained by an approximate method in a paper by Polanyi and Wigner.\(^{6}\)

General case

Cases could of course be multiplied almost indefinitely but enough examples have been given to leave no doubt of the proposed method of procedure in a particular case. We may write for the specific reaction rate constant for a reaction of any order

\[
k_i = c (F_a/F_a') (\bar{p} / m^*) = c (F_a'/F_a) (kT/h)e^{-E_0/kT}
\]

(10)

where \(F_a \) is simply the partition function (or Zustandsumme) for the activated state and \(F_a' \) is the same quantity for the normal state. \(F_a' \) is the partition function for the activated complex for all the normal coordinates except the one in which decomposition is occurring. The partition function for this normal coordinate is included in the factor \((kT/h)e^{-E_0/kT} \). The other quantities have been defined.

The frequently observed negative temperature coefficient of trimolecular reactions has a ready explanation from the point of view presented here. Since the formation of an activated complex from three molecules involves a great loss in entropy, a reaction which goes with a reasonable rate at ordinary temperatures will necessarily have a low activation energy. Further in forming the complex a number of translational and rotational terms with direct dependence on temperature are converted into vibrational terms with very low temperature dependence. Thus the rate will vary inversely with the temperature to a comparatively high power so that if the activation energy is low enough, the \(k \) will have a negative temperature coefficient. Kassel\(^{9}\) has discussed such reactions also.

The extremely low rates, as compared with expectations from kinetic theory, observed in solutions\(^1\) are to be thought of as associated with a change of translational or rotational degrees of freedom of the original molecules into vibrational or oscillational states of the activated complex. These changes may of course be in the enveloping solvent molecule. Any advantage of this formulation of the problem for solutions over any other consideration of entropy and heat content must come from a happy choice of the mechanism of reaction.

When the rate determining step shifts to the collision process as it does for "unimolecular reactions" at low enough pressure we again use well-known statistical methods, but our slow process is now connected with energy transfer in collision.

\(^{6}\) M. Polanyi and E. Wigner, Zeits. f. physik. Chemie A (Haber Band), 439 (1928).

\(^{9}\) L. S. Kassel, J. Phys. Chem. 34, 1777 (1930).
Kinetic Theory Diameters

It becomes a matter of considerable interest to show under what circumstances the preceding general statistical method reduces to the simple kinetic theory scheme as ordinarily applied. We first calculate the number of collisions between two kinds of hard spheres A and B with radii r_1 and r_2 and masses m_1 and m_2, respectively. We use our general method. The respective concentrations per cc of A and B are N_1 and N_2. Our procedure is to calculate the number of pairs of molecules per cc per second which come closer to each other than $(r_1 + r_2 + \epsilon)$. We then let ϵ approach zero. Our collision complex then has three degrees of freedom associated with translational motion of the center of gravity; one degree corresponding to relative translation along the line of centers; and two degrees corresponding to motion perpendicular to the line of centers, i.e., two degrees of rotation. Before collision there are six translational degrees of freedom, i.e., three for each sphere. The expression for the number of collisions when there is one molecule of each kind per cc may then be written at once:

$$k_{11} = \frac{\sum_{0}^{\infty} (2J+1) \exp \left(-j(j+1)\frac{h^2}{8\pi^2I_kT}\right)}{\left[(2\pi m_1kT)^{1/2}\right][\left(2\pi m_2kT\right)^{1/2}]}. \quad (11)$$

The significance of each term will be clear from our previous discussion.

Now if the temperature is not too low we have $j(j+1)\frac{h^2}{8\pi^2I_kT} \ll kT$; so that we can make the usual approximation for the two rotational degrees of freedom, i.e.,

$$\sum_{0}^{\infty} (2J+1) \exp \left(-j(j+1)\frac{h^2}{8\pi^2I_kT}\right) = 8\pi^2I_kT/h^2.$$

Also kT/h is just the term $[(2\pi m^*kT)^{1/2}]/m^*$ of course. The moment of inertia $I = (m_1m_2/m_1+m_2) \times (r_1+r_2)^2$, so that we have after simplification

$$k_{11} = 2(r_1+r_2)^2(2\pi kT(m_1+m_2)/m_1m_2)^{1/2}. \quad (12)$$

The number of collisions per cc per second is then

$$Z = N_1N_2k_{11} = 2N_1N_2(r_1+r_2)^2(2\pi kT(m_1+m_2)/m_1m_2)^{1/2}. \quad (13)$$

which is the usual expression for the number of collisions. Our method of treatment of collisions neglects certain of the refined features arising from the wave nature of the atoms. These are not of interest to us in our present treatment of reaction rates since here we make no explicit use of kinetic theory diameters. For an exposition of these features see a series of papers by Massey and Mohr.\(^{10}\)

For identical colliding systems a symmetry number should be included in (11) to (13).

It is now easy to see when we are justified in using the simple kinetic picture. If the two colliding molecules have (a) none of their internal frequencies appreciably modified in the activated state and (b) if the two degrees of freedom replacing translation, which are not themselves translation, correspond to a rotation (as in the very special case of two colliding atoms) or if they are bending frequencies with force constants of practically zero, then we are justified in applying the simple kinetic theory. Even then there will be some difference arising from the fact that (r_1+r_2) for transfer of momentum is in extreme cases as much as 2.5 times as large as for the corresponding activated complex. Thus approximate agreement with simple kinetic theory will occur in particular cases, but much lower as well as higher values are to be expected in other reactions.

In general it does not seem useful to separate our formulas into a collision factor and a steric factor, but if this is to be done we should associate the kinetic theory diameter with the changes occurring in the particular six degrees of freedom which correspond to translation before the molecules collide. The changes in the other degrees of freedom would then be interpreted as the steric factor. It is

\(^{10}\) H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. A141, 434 (1933); A144, 188 (1934) and subsequent papers.
interesting to note that if the two bending frequencies arising from translational terms are stiff enough so that the system lies almost entirely in the corresponding lowest states, the reaction diameter as just defined will be less than the kinetic diameter by the factor $8\pi^2 I_k T / h^2$ which may reach value of the order of 100 for heavy atoms and moderately high temperatures.

The present formulation of the calculation of absolute rates of chemical reactions has certain features in common with a number of more intuitive previous treatments, but has more in common with the treatment of Pelzer and Wigner. It goes beyond these in formulating the general problem in a way susceptible to treatment with our present potential energy surfaces and in pointing out the consequences of quantization on the temperature coefficient and the difference in rate for isotopes. The fact that the activated complex is much like any other molecule except in the degree of freedom in which it is flying to pieces makes possible our comparatively simple formulation. A number of investigations are now in progress in which the absolute rate of reaction is being calculated.

I want particularly to thank Dr. Bryan Topley for valuable discussions as it was with him the present calculations of absolute rates were begun. I also want to thank Professors Taylor and Webb for helpful discussions.

Thermodynamic Functions of Tetramethylmethane

LOUIS S. KASSEL, Pittsburgh Experiment Station, U. S. Bureau of Mines, Pittsburgh, Pennsylvania

(Received November 20, 1934)

The Q-sum corresponding to La Coste's eigenvalues for the rotational levels of tetramethylmethane has been expressed by the usual asymptotic expansion. The relatively large coupling terms between the various rotations cancel almost exactly in the Q-sum, so that the thermodynamic functions are scarcely affected by the coupling.

La Coste\(^3\) has given an exact solution for the rotational wave equation of tetramethylmethane with zero potential energy. The energy levels are

$$
E = (h^2/8\pi^2 I_0)[j(j+1)] + (I_0/I_s)(m_1^2 + m_2^2 + m_3^2 + m_4^2) + q^2 - 2q m_o, \tag{1}
$$

where I is the moment of inertia of the molecule with methyl groups fixed, I_s the moment of a methyl group about the $C-C$ axis, $I_0 = I - (4/3)I_s$, and

$$
q^2 = m_1^2 + m_2^2 + m_3^2 + m_4^2 - (2/3)(m_1 m_2 + m_3 + m_4), \tag{2}
$$

The quantum numbers m_1, m_2, m_3 and m_4 of the single methyl groups take integral positive and negative values, while j, m_o and m_x are the ordinary quantum numbers for a symmetrical top. The term q^2 within the bracket represents a coupling between the various internal rotations which raises the energy levels and thus decreases the Q-sum. The term $-2q m_o$ splits the levels without shift in their center of gravity and hence raises the Q-sum. Each of these effects is quite large, but the two will be found to cancel almost exactly.

With the notation

$$
\sigma = h^3/8\pi^2 I_0 k T, \tag{3}; \quad \rho = I_0/I_s, \tag{4}
$$

the Q-sum is

$$
Q = \sum_{j} \sum_{m} \sum \sum \sum \sum \exp \left[-j(j+1)\sigma \right] - \rho \sigma (m_1^2 + m_2^2 + m_3^2 + m_4^2) - q^2 \sigma + 2q m_o \sigma. \tag{5}
$$